An Efficient Dictionary for Reconstruction of Sampled Multiband Signals

Michael B. Wakin

Mark A. Davenport

Colorado School of Mines Division of Engineering Stanford University Department of Statistics

Two Regimes

Compressive Sensing (CS) is discrete-time, finite

Two Regimes

Compressive Sensing (CS) is discrete-time, finite

Analog signals are continuous-time, infinite

Two Regimes

Compressive Sensing (CS) is discrete-time, finite

Analog signals are continuous-time, infinite

How compatible are these regimes?

Potential Challenges

Challenge 1:

Map analog sensing into matrix multiplication

Challenge 2:

Map analog sparsity into digital sparsity

Map analog sensing into matrix multiplication

Map analog sensing into matrix multiplication

$$y[m] = \langle \phi_m(t), x(t) \rangle$$

Map analog sensing into matrix multiplication

If x(t) is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \operatorname{sinc}(t/T_s - n) \rangle$$

Map analog sensing into matrix multiplication

If x(t) is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \operatorname{sinc}(t/T_s - n) \rangle$$

 $\begin{array}{c} \vdots \\ = \cdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$

Nyquist-rate samples of x(t)

Map analog sensing into matrix multiplication

If x(t) is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \operatorname{sinc}(t/T_s - n) \rangle$$

Map analog sparsity into digital sparsity

Candidate Models

	Model for $x(t)$	Basis for \overrightarrow{x}	Sparsity level for \overrightarrow{x}
multitone	sum of S "on-grid" tones	Ψ = DFT	S-sparse

Candidate Models

	Model for $x(t)$	Basis for \overrightarrow{x}	Sparsity level for \overrightarrow{x}
multitone	sum of S "on-grid" tones	Ψ = DFT	S-sparse
multiband	${\cal K}$ occupied bands of bandwidth ${\cal B}$	Ψ = ?	?

- Landau
- Bresler, Feng, Venkataramani
- Eldar, Mishali

$$x(t) = \int_{-\frac{B}{2}}^{\frac{B}{2}} X(F)e^{j2\pi Ft} dF$$

$$x(t) = \int_{-\frac{B}{2}}^{\frac{B}{2}} X(F)e^{j2\pi Ft} dF$$

$$x[n] = \int_{-W}^{W} X(f)e^{j2\pi fn} df, \ \forall n \quad X(f)$$

$$W = \frac{B}{2B_{\text{nyq}}}$$

$$x[n] = \int_{-W}^{W} X(f)e^{j2\pi fn} df, \ \forall n \quad X(f)$$

$$x[n] = \int_{-W}^{W} X(f) e^{j2\pi f n} \ df, \ orall n$$
 time-limiting $-\frac{1}{2}$

$$x[n] = \int_{-W}^{W} X(f)e^{j2\pi fn} df, \ \forall n \quad X(f)$$

time-limiting

$$ec{x} = \sum_{k=0}^{N-1} X_k ec{e}_{rac{k}{N}}, \quad ec{e}_f := \left[egin{array}{c} e^{j2\pi f0} \ e^{j2\pi f} \ dots \ e^{j2\pi f(N-1)} \end{array}
ight]$$
NOT SPARSE

Alternative Perspective

$$x[n] = \int_{-W}^{W} X(f)e^{j2\pi fn} df, \ \forall n \quad X(f)$$

Alternative Perspective

$$x[n] = \int_{-W}^{W} X(f) e^{j2\pi f n} \ df, \ \forall n$$
 $X(f) = \int_{-\frac{1}{2}}^{W} X(f) e^{j2\pi f n} \ df$ time-limiting

$$\mathcal{T}_N(x[n]) = \int_{-W}^{W} X(f) \mathcal{T}_N(e^{j2\pi f n}) df, \ \forall n$$

Building Blocks for Lowpass Signals

Time-limited complex exponentials form a "basis" for \vec{x} :

$$\vec{x} = \int_{-W}^{W} X(f)\vec{e}_f \, df$$

$$ec{e}_f := \left[egin{array}{c} e^{j2\pi f0} \ e^{j2\pi f} \ dots \ e^{j2\pi f(N-1)} \end{array}
ight]$$

Building Blocks for Lowpass Signals

Time-limited complex exponentials form a "basis" for $ec{x}$:

$$\vec{x} = \int_{-W}^{W} X(f)\vec{e}_f \, df$$

$$ec{e}_f := \left[egin{array}{c} e^{j2\pi f0} \ e^{j2\pi f} \ dots \ e^{j2\pi f(N-1)} \end{array}
ight]$$

Building Blocks for Lowpass Signals

Time-limited complex exponentials form a "basis" for \vec{x} :

$$\vec{x} = \int_{-W}^{W} X(f)\vec{e}_f \, df$$

$$ec{e}_f := \left[egin{array}{c} e^{j2\pi f0} \\ e^{j2\pi f} \\ dots \\ e^{j2\pi f(N-1)} \end{array}
ight]$$

The problem: we need infinitely many of them.

Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \|\vec{e}_f - P_Q \vec{e}_f\|_2^2 df$$

over all subspaces Q of dimension k.

Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \|\vec{e}_f - P_Q \vec{e}_f\|_2^2 df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k "DPSS vectors".

Discrete Prolate Spheroidal Sequences (DPSS's)

Slepian [1978]: Given an integer N and $W \leq 0.5$, the DPSS's are a collection of N vectors

$$\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_{N-1} \in \mathbf{R}^N$$

that satisfy

Discrete Prolate Spheroidal Sequences (DPSS's)

Slepian [1978]: Given an integer N and $W \leq 0.5$, the DPSS's are a collection of N vectors

$$\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_{N-1} \in \mathbf{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(\vec{s}_\ell))) = \lambda_\ell \vec{s}_\ell.$$

Discrete Prolate Spheroidal Sequences (DPSS's)

Slepian [1978]: Given an integer N and $W \leq 0.5$, the DPSS's are a collection of N vectors

$$\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_{N-1} \in \mathbf{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(\vec{s}_\ell))) = \lambda_\ell \vec{s}_\ell.$$

The DPSS's are perfectly time-limited, but when $\lambda_\ell pprox 1$

they are highly concentrated in frequency.

DPSS Eigenvalue Concentration

DPSS Eigenvalue Concentration

The first $\approx 2NW$ eigenvalues ≈ 1 . The remaining eigenvalues ≈ 0 .

DPSS Examples

$$N = 1024 \qquad W = \frac{1}{4}$$

Recall: Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \|\vec{e}_f - P_Q \vec{e}_f\|_2^2 df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k "DPSS vectors".

Recall: Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \|\vec{e}_f - P_Q \vec{e}_f\|_2^2 df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k "DPSS vectors".

$$\int_{-W}^{W} \|\vec{e}_f - P_Q \vec{e}_f\|_2^2 df = \sum_{\ell=k}^{N-1} \lambda_{\ell}$$

Approximation of Bandlimited Signals

Approximation of Bandlimited Signals

Most bandlimited analog signals, when sampled and time-limited, are well-approximated by the first k DPSS vectors.

DPSS's for Bandpass Signals

Modulate *k* DPSS vectors to center of each band:

J possible bands

Modulate *k* DPSS vectors to center of each band:

$$\Psi = [\Psi_1, \Psi_2, \dots, \Psi_J]$$

J possible bands

Modulate *k* DPSS vectors to center of each band:

J possible bands

Modulate *k* DPSS vectors to center of each band:

$$\Psi = [\Psi_1, \Psi_2, \dots, \Psi_J]$$
 approximately square if $k pprox 2NW$

Most multiband analog signals, when sampled and time-limited, are well-approximated by a sparse representation in Ψ .

Theorem:

Suppose that Φ is sub-Gaussian and that the $\Psi_{\pmb{i}}$ are constructed with $k=(1-\epsilon)2NW$. If

$$M \ge CS \log(N/S)$$

then with high probability $\Phi\Psi$ will satisfy the RIP of order S.

Theorem:

Suppose that Φ is sub-Gaussian and that the $\Psi_{\pmb{i}}$ are constructed with $k=(1-\epsilon)2NW$. If

$$M \ge CS \log(N/S)$$

then with high probability $\Phi\Psi$ will satisfy the RIP of order S.

 $oldsymbol{K}$ occupied bands

Theorem:

Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k=(1-\epsilon)2NW$. If

$$M \ge CS \log(N/S)$$

then with high probability $\Phi\Psi$ will satisfy the RIP of order S.

K occupied bands \longrightarrow $S \approx KNB/B_{\rm nvg}$

$$S \approx KNB/B_{\rm nyq}$$

Theorem:

Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k=(1-\epsilon)2NW$. If

$$M \ge CS \log(N/S)$$

then with high probability $\Phi\Psi$ will satisfy the RIP of order S.

K occupied bands \longrightarrow $S \approx KNB/B_{\rm nvg}$

$$S \approx KNB/B_{\rm nyq}$$

$$\frac{M}{N} \ge C' \frac{KB}{B_{\text{nyq}}} \log \left(\frac{B_{\text{nyq}}}{KB} \right)$$

Block-Sparse Recovery

Nonzero coefficients of $\vec{\alpha}$ should be clustered in blocks according to the occupied frequency bands

$$ec{x} = \left[\Psi_1, \Psi_2, \ldots, \Psi_J
ight] \left[egin{array}{c} ec{lpha}_1 \ ec{lpha}_2 \ dots \ ec{lpha}_J \end{array}
ight]$$

This can be leveraged to reduce the required number of measurements and improve performance through "model-based CS"

- -Baraniuk et al. [2008, 2009, 2010]
- -Blumensath and Davies [2009, 2011]

Recovery: DPSS vs DFT

$$rac{B}{B_{
m nyq}}=rac{1}{512}$$
 $K=5$ $N=1024$ $Spprox 45$ $M=128$

Recovery: DPSS vs DFT

$$rac{B}{B_{ ext{nyq}}} = rac{1}{512} \quad K = 5 \quad N = 1024 \quad S pprox 45$$
 $M = 128$

DPSS: SNR = 54dB

Recovery: DPSS vs DFT

$$rac{B}{B_{
m nyq}}=rac{1}{512}$$
 $K=5$ $N=1024$ $Spprox 45$ $M=128$

DPSS: SNR = 54dB

DFT: SNR = 12dB

Interference Cancellation

DPSS's can be used to cancel bandlimited interferers without reconstruction.

Interference Cancellation

DPSS's can be used to cancel bandlimited interferers without reconstruction.

$$P = I - \Phi \Psi_i (\Phi \Psi_i)^{\dagger}$$

Interference Cancellation

DPSS's can be used to cancel bandlimited interferers without reconstruction.

Useful in compressive signal processing applications.

Summary

- DPSS's can be used to efficiently represent most sampled multiband signals
 - far superior to DFT

Summary

- DPSS's can be used to efficiently represent most sampled multiband signals
 - far superior to DFT
- Two types of error: *approximation* + *reconstruction*
 - approximation: small for most signals
 - reconstruction: zero for DPSS-sparse vectors
 - delicate balance in practice, but there is a sweet spot

Summary

- DPSS's can be used to efficiently represent most sampled multiband signals
 - far superior to DFT
- Two types of error: *approximation* + *reconstruction*
 - approximation: small for most signals
 - reconstruction: zero for DPSS-sparse vectors
 - delicate balance in practice, but there is a sweet spot
- Related work
 - Gosse; Sejdić et al.; Senay et al.; Oh et al.; Izu and Lakey
 - none study <u>DPSS-based approximations</u> of <u>sampled</u> <u>multiband signals</u> and provide <u>CS recovery results</u>