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H  tibl   th  i ?How compatible are these regimes?
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Challenge 2:g
Map analog sparsity into digital sparsity 

N × 1
vectorvector

Nyquist-rate yq
samples 

of x(t)
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The Problem with the DFT
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Building Blocks for Lowpass Signals

Time-limited complex exponentials form a “basis” for   :

CN~eW~x =

Z W

X(f)~ef df

~e−W

Z
−W

~e0e0
The problem: we need infinitely many of them.
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Discrete Prolate Spheroidal Sequences 
(DPSS’ )(DPSS’s)

Sl i [1978]  Gi   i t  N d W ≤ 0 5Slepian [1978]: Given an integer N and W ≤ 0.5,
the DPSS’s are a collection of N vectors

that satisfythat satisfy

The DPSS’s are perfectly time limited  but when The DPSS s are perfectly time-limited, but when 

h   hi hl  d i  fthey are highly concentrated in frequency.
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λλ`

`

The first            eigenvalues .
The remaining eigenvalues .The remaining eigenvalues .



DPSS Examples
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SNR (dB)

1
2− 1

2 0−W W
ff

Most bandlimited analog signals, 
when sampled and time-limited, 

are well-approximated by the first k DPSS vectors.



DPSS’s for Bandpass Signals
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DPSS Dictionaries for CS

2WModulate k DPSS vectors

X(f)
to center of each band:

11 1
2− 1

2 0
approximately square 

if k ≈ 2NW

J possible bands

Most multiband analog signals, 
when sampled and time-limited, 

are well-approximated by a sparse representation in Ψ.
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Block-Sparse Recovery

Nonzero coefficients of     should be clustered in blocks 
according to the occupied frequency bandsaccording to the occupied frequency bands

This can be leveraged to reduce the required number 
of measurements and improve performance through of measurements and improve performance through 
“model-based CS”

–Baraniuk et al  [2008  2009  2010]Baraniuk et al. [2008, 2009, 2010]
–Blumensath and Davies [2009, 2011]
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Interference Cancellation
DPSS’s can be used to cancel bandlimited interferers 
without reconstruction.without reconstruction.

Useful in compressive signal processing applications.
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Summary

• DPSS’s can be used to efficiently represent most
sampled multiband signalssampled multiband signals
– far superior to DFT

• Two types of error: approximation + reconstruction
– approximation: small for most signals

t ti   f  DPSS  t– reconstruction: zero for DPSS-sparse vectors
– delicate balance in practice, but there is a sweet spot

• Related work
– Gosse; Sejdić et al.; Senay et al.; Oh et al.; Izu and 

L kLakey
– none study DPSS-based approximations of sampled 

multiband signals and provide CS recovery resultsmultiband signals and provide CS recovery results


