An Efficient Dictionary for Reconstruction of Sampled Multiband Signals

Michael B. Wakin Mark A. Davenport

Colorado School of Mines Stanford University
Division of Engineering Department of Statistics
Two Regimes

Compressive Sensing (CS) is discrete-time, finite

\[\vec{y} = \Phi \vec{x} \]
Two Regimes

Compressive Sensing (CS) is discrete-time, finite

\[\vec{y} = \Phi \vec{x} \]

Analog signals are continuous-time, infinite

\[x(t) \rightarrow \text{random meas.} \rightarrow \ldots, y[-1], y[0], y[1], \ldots \]
Two Regimes

Compressive Sensing (CS) is discrete-time, finite

\[\vec{y} = \Phi \vec{x} \]

Analog signals are continuous-time, infinite

\[x(t) \xrightarrow{\text{random meas.}} \ldots, y[-1], y[0], y[1], \ldots \]

How compatible are these regimes?
Potential Challenges

Challenge 1:
Map analog sensing into matrix multiplication

Challenge 2:
Map analog sparsity into digital sparsity
Challenge 1:
Map analog sensing into matrix multiplication
Challenge 1:

Map analog sensing into matrix multiplication

\[y[m] = \langle \phi_m(t), x(t) \rangle \]
Challenge 1:
Map analog sensing into matrix multiplication

If $x(t)$ is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \text{sinc}(t/T_s - n) \rangle$$
Challenge 1:
Map analog sensing into matrix multiplication

If \(x(t) \) is bandlimited,

\[
y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \text{sinc}(t/T_s - n) \rangle
\]
Challenge 1:

Map analog sensing into matrix multiplication

If $x(t)$ is bandlimited,

$$y[m] = \langle \phi_m(t), x(t) \rangle = \sum_{n=-\infty}^{\infty} x[n] \langle \phi_m(t), \text{sinc}(t/T_s - n) \rangle$$

\[\begin{array}{c}
\vec{y} \\
M \times 1 \\
\text{measurements} \\
\end{array} = \Phi \ \\
M \times N \\
\Phi \ \\
\vec{x} \\
N \times 1 \\
\text{Nyquist-rate samples of } x(t) \ \\
\end{array} \]
Challenge 2:

Map analog sparsity into digital sparsity

\[\begin{align*}
\vec{x} & = \Psi \\
N \times 1 \text{ vector} & = \text{Nyquist-rate samples of } x(t) \\
\vec{\alpha} & \\
\end{align*} \]
Candidate Models

<table>
<thead>
<tr>
<th>Model for $x(t)$</th>
<th>Basis for \mathbf{x}</th>
<th>Sparsity level for \mathbf{x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>multitone, sum of S “on-grid” tones</td>
<td>$\Psi = \text{DFT}$</td>
<td>S-sparse</td>
</tr>
</tbody>
</table>

The diagram below illustrates the frequency spectrum $X(F)$ of the signal $x(t)$, showing a sparse representation within the band $-\frac{B_{\text{nyq}}}{2}$ to $\frac{B_{\text{nyq}}}{2}$.
Candidate Models

<table>
<thead>
<tr>
<th>Model for $x(t)$</th>
<th>Basis for x</th>
<th>Sparsity level for x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multitone</td>
<td>sum of S “on-grid” tones</td>
<td>$\Psi = \text{DFT}$</td>
</tr>
<tr>
<td>Multiband</td>
<td>K occupied bands of bandwidth B</td>
<td>$\Psi = ?$</td>
</tr>
</tbody>
</table>

Diagram

- Landau
- Bresler, Feng, Venkataramani
- Eldar, Mishali
The Problem with the DFT

\[x(t) = \int_{-\frac{B}{2}}^{\frac{B}{2}} X(F) e^{j2\pi Ft} \, dF \]
The Problem with the DFT

\[x(t) = \int_{-\frac{B}{2}}^{\frac{B}{2}} X(F) e^{j2\pi Ft} dF \]

sampling

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} df, \forall n \]

\[W = \frac{B}{2B_{\text{nyq}}} \]
The Problem with the DFT

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} df, \quad \forall n \]

\[X(f) \]

\[\text{DTFT} \]

\[-\frac{1}{2} \quad 0 \quad \frac{1}{2} \]

\[2W \]
The Problem with the DFT

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} \, df, \quad \forall n \]

time-limiting

\[\vec{x} = \sum_{k=0}^{N-1} X_k \vec{e}_k, \quad \vec{e}_f := \begin{bmatrix} e^{j2\pi f0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix} \]
The Problem with the DFT

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} df, \quad \forall n \quad X(f) \]

\[\text{time-limiting} \]

\[\vec{x} = \sum_{k=0}^{N-1} X_k \vec{e}_k, \quad \vec{e}_f := \begin{bmatrix} e^{j2\pi f0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix} \]

NOT SPARSE
$$x[n] = \int_{-W}^{W} X(f)e^{j2\pi fn} \, df, \quad \forall n$$
Alternative Perspective

\[x[n] = \int_{-W}^{W} X(f) e^{j2\pi fn} \, df, \quad \forall n \]

\[T_N(x[n]) = \int_{-W}^{W} X(f) T_N(e^{j2\pi fn}) \, df, \quad \forall n \]
Building Blocks for Lowpass Signals

Time-limited complex exponentials form a “basis” for \vec{x}:

$$\vec{x} = \int_{-W}^{W} X(f) \vec{e}_f \, df$$

$$\vec{e}_f := \begin{bmatrix} e^{j2\pi f0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix}$$
Building Blocks for Lowpass Signals

Time-limited complex exponentials form a “basis” for \vec{x}:

$$\vec{x} = \int_{-W}^{W} X(f) \vec{e}_f \, df$$

$$\vec{e}_f := \begin{bmatrix} e^{j2\pi f0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix}$$

C^N
Time-limited complex exponentials form a "basis" for \vec{x}:

$$\vec{x} = \int_{-W}^{W} X(f) \vec{e}_f \, df$$

$$\vec{e}_f := \begin{bmatrix} e^{j2\pi f_0} \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-1)} \end{bmatrix}$$

The problem: we need infinitely many of them.
Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \| \vec{e}_f - P_Q \vec{e}_f \|_2^2 \, df$$

over all subspaces Q of dimension k.
Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \|\vec{e}_f - P_Q\vec{e}_f\|_2^2 \, df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k “DPSS vectors”.
Discrete Prolate Spheroidal Sequences (DPSS’s)

Slepian [1978]: Given an integer N and $W \leq 0.5$, the DPSS’s are a collection of N vectors

$$\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_{N-1} \in \mathbb{R}^N$$

that satisfy
Discrete Prolate Spheroidal Sequences (DPSS’s)

Slepian [1978]: Given an integer N and $W \leq 0.5$, the DPSS’s are a collection of N vectors

$$\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_{N-1} \in \mathbb{R}^N$$

that satisfy

$$T_N(\mathcal{B}_W(\vec{s}_\ell))) = \lambda_\ell \vec{s}_\ell.$$
Slepian [1978]: Given an integer N and $W \leq 0.5$, the DPSS’s are a collection of N vectors

$$\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_{N-1} \in \mathbb{R}^N$$

that satisfy

$$\mathcal{T}_N(\mathcal{B}_W(\vec{s}_\ell))) = \lambda_\ell \vec{s}_\ell.$$

The DPSS’s are perfectly time-limited, but when

$$\lambda_\ell \approx 1$$

they are highly concentrated in frequency.
DPSS Eigenvalue Concentration

λ_ℓ

$N = 1024$

$W = \frac{1}{4}$
The first $\approx 2NW$ eigenvalues ≈ 1. The remaining eigenvalues ≈ 0.

$N = 1024$
$W = \frac{1}{4}$

$2NW = 512$
DPSS Examples

\[N = 1024 \quad W = \frac{1}{4} \]

\[\ell = 0 \quad \ell = 127 \quad \ell = 511 \]
Recall: Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \| \vec{e}_f - P_Q \vec{e}_f \|_2^2 \, df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k “DPSS vectors”.
Recall: Best Subspace Fit

Suppose that we wish to minimize

$$\int_{-W}^{W} \left\| \tilde{e}_f - P_Q \tilde{e}_f \right\|_2^2 \, df$$

over all subspaces Q of dimension k.

Optimal subspace is spanned by the first k “DPSS vectors”.

$$\int_{-W}^{W} \left\| \tilde{e}_f - P_Q \tilde{e}_f \right\|_2^2 \, df = \sum_{\ell=k}^{N-1} \lambda_{\ell}$$
Approximation of Bandlimited Signals

SNR (dB)

$$20 \log_{10} \left(\frac{\| \tilde{e}_f \|}{\| \tilde{e}_f - P_Q \tilde{e}_f \|} \right)$$
Approximation of Bandlimited Signals

Most bandlimited analog signals, when sampled and time-limited, are well-approximated by the first k DPSS vectors.
DPSS’s for Bandpass Signals
Modulate k DPSS vectors to center of each band:

$X(f)$

$-\frac{1}{2}$ 0 $\frac{1}{2}$

J possible bands
Modulate \(k \) DPSS vectors to center of each band:

\[
\Psi = [\Psi_1, \Psi_2, \ldots, \Psi_J]
\]
Modulate k DPSS vectors to center of each band:

$$\Psi = [\Psi_1, \Psi_2, \ldots, \Psi_J]$$

approximately square if $k \approx 2NW$

J possible bands
DPSS Dictionaries for CS

Modulate k DPSS vectors to center of each band:

$$\Psi = [\Psi_1, \Psi_2, \ldots, \Psi_J]$$

approximately square if $k \approx 2NW$

Most multiband analog signals, when sampled and time-limited, are well-approximated by a sparse representation in Ψ.

$X(f)$

$-\frac{1}{2}$ 0 $\frac{1}{2}$

$2W$

J possible bands
Theorem:
Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k = (1 - \epsilon)2NW$. If

$$M \geq CS \log(N/S)$$

then with high probability $\Phi \Psi$ will satisfy the RIP of order S.

[W and Davenport, 2011]
DPSS Dictionaries and the RIP

Theorem:
Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k = (1 - \epsilon)2NW$. If

$$M \geq CS \log(N/S)$$

then with high probability $\Phi \Psi$ will satisfy the RIP of order S.

K occupied bands

[W and Davenport, 2011]
Theorem:
Suppose that \(\Phi \) is sub-Gaussian and that the \(\Psi_i \) are constructed with \(k = (1 - \epsilon)2NW \). If

\[
M \geq CS \log(N/S)
\]

then with high probability \(\Phi \Psi \) will satisfy the RIP of order \(S \).

\(K \) occupied bands \(\rightarrow \) \(S \approx KNB / B_{nyq} \)
DPSS Dictionaries and the RIP

Theorem:
Suppose that Φ is sub-Gaussian and that the Ψ_i are constructed with $k = (1 - \epsilon)2NW$. If

$$M \geq CS \log(N/S)$$

then with high probability $\Phi \Psi$ will satisfy the RIP of order S.

K occupied bands $\quad \Rightarrow \quad S \approx KNB/B_{\text{nyq}}$

$$\frac{M}{N} \geq C' \frac{KB}{B_{\text{nyq}}} \log \left(\frac{B_{\text{nyq}}}{KB} \right)$$

[W and Davenport, 2011]
Block-Sparse Recovery

Nonzero coefficients of $\tilde{\alpha}$ should be clustered in blocks according to the occupied frequency bands

$$\tilde{x} = [\Psi_1, \Psi_2, \ldots, \Psi_J] \begin{bmatrix} \tilde{\alpha}_1 \\ \tilde{\alpha}_2 \\ \vdots \\ \tilde{\alpha}_J \end{bmatrix}$$

This can be leveraged to reduce the required number of measurements and improve performance through “model-based CS”

– Baraniuk et al. [2008, 2009, 2010]
– Blumensath and Davies [2009, 2011]
Recovery: DPSS vs DFT

\[\frac{B}{B_{nyq}} = \frac{1}{512} \quad K = 5 \quad N = 1024 \quad S \approx 45 \]

\[M = 128 \]
Recovery: DPSS vs DFT

\[\frac{B}{B_{nyq}} = \frac{1}{512} \quad K = 5 \quad N = 1024 \quad S \approx 45 \]

\[M = 128 \]

DPSS: SNR = 54dB
Recovery: DPSS vs DFT

\[\frac{B}{B_{\text{nyq}}} = \frac{1}{512} \quad K = 5 \quad N = 1024 \quad S \approx 45 \]

\[M = 128 \]

DPSS : SNR = 54dB

DFT : SNR = 12dB
Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers without reconstruction.
Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers without reconstruction.

\[P = I - \Phi \Psi_i (\Phi \Psi_i)\dagger \]
Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers
without reconstruction.

\[P = I - \Phi \Psi_i (\Phi \Psi_i)^\dagger \]

Useful in compressive signal processing applications.
Summary

• DPSS’s can be used to efficiently represent most sampled multiband signals
 – far superior to DFT
Summary

• DPSS’s can be used to efficiently represent *most* sampled multiband signals
 – far superior to DFT

• Two types of error: *approximation* + *reconstruction*
 – approximation: small for most signals
 – reconstruction: zero for DPSS-sparse vectors
 – delicate balance in practice, but there is a sweet spot
Summary

• DPSS’s can be used to efficiently represent most sampled multiband signals
 – far superior to DFT

• Two types of error: *approximation* + *reconstruction*
 – approximation: small for most signals
 – reconstruction: zero for DPSS-sparse vectors
 – delicate balance in practice, but there is a sweet spot

• Related work
 – Gosse; Sejdić et al.; Senay et al.; Oh et al.; Izu and Lakey
 – none study DPSS-based approximations of sampled multiband signals and provide CS recovery results