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How compatible are these regimes?




Potential Challenges

Challenge 1:

Map analog sensing into matrix multiplication

Challenge 2:
Map analog sparsity into digital sparsity
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Challenge 2:
_ Map analog sparsity into digital sparsity
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The Problem with the DFT
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The Problem with the DFT
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Alternative Perspective

- DTFT ——

W
2] = /_ XN,




Alternative Perspective

W
2ln] = / XN i

- DTFT ——

ltime—limiting

Tn (z[n]) :/_WX(f)TN(6j2”f”) df, Vn




Building Blocks for Lowpass Signals
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Building Blocks for Lowpass Signals
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Time-limited complex exponentials form a “basis” forXI:
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The problem: we need infinitely many of them.
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Slepian [1978]: Given an integer N and W < 0.5,
the DPSS’s are a collection of N vectors
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fThe DPSS’s are perfectly time-limited, but when
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they are highly concentrated in frequency. y




DPSS Eigenvalue Concentration
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DPSS Eigenvalue Concentration
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The first = 2NW eigenvalues = 1.

The remaining eigenvalues = 0.
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DPSS Examples
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Approximation of Bandlimited Signals
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Approximation of Bandlimited Signals
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Most bandlimited analog signals,

when sampled and time-limited,
_are well-approximated by the first k£ DPSS vectors. |




DPSS’s for Bandpass Signals
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Modulate k DPSS vectors =22
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Most multiband analog signals,

when sampled and time-limited,
_are well-approximated by a sparse representation in ¥. |
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Block-Sparse Recovery

Nonzero coefficients of & should be clustered in blocks
according to the occupied frequency bands

;f:[\llh...,\l',]] - dp

Qg

This can be leveraged to reduce the required number
of measurements and improve performance through
“model-based CS”

—-Baraniuk et al. [2008, 2009, 2010]
-Blumensath and Davies [2009, 2011]



Recovery: DPSS vs DFT
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Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers
without reconstruction.
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Interference Cancellation

DPSS’s can be used to cancel bandlimited interferers

without reconstruction.

0

50}
-100¢
-150¢
20T 1 kgv i 1
4 f 4 2

P=1—3oy,;(dT,)!

Useful in compressive signal processing applications.
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Summary

e DPSS’s can be used to efficiently represent most
sampled multiband signals

— far superior to DFT

e Two types of error: approximation + reconstruction
— approximation: small for most signals
— reconstruction: zero for DPSS-sparse vectors
— delicate balance in practice, but there is a sweet spot

e Related work

— Gosse; Sejdic et al.; Senay et al.; Oh et al.; Izu and
Lakey

- none study DPSS-based approximations of sampled
multiband signals and provide CS recovery results




