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Top 10 Scientific Algorithms
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the articles appear in no particular order):

* Metropolis Algorithm for Monte Carlo

Simplex Method for Lincar Programming

Krylov Subspace Iteration Mcthods

® The Decompositional Approach to Matrix
Computations

* The Fortran Optimizing Compiler

QR Algorithm for Computing Eigenvalues

Quicksort Algorithm for Sorting

Fast Fourier Transform

Integer Relation Detection
Fast Multipole Method

With cach of these algorithms or approaches, there
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Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.
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The Decompositional Approach

“The underlying principle of the decompositional approach to matrix
computation is that it is not the business of the matrix algorithmicists
to solve particular problems but to construct computational
platforms from which a variety of problems can be solved.”

@ A decomposition solves not one but many problems

« Often expensive to compute but can be reused

:& Shows that apparently different algorithms produce the same object
« Facilitates rounding-error analysis

« Can be updated efficiently to reflect new information

« Has led to highly effective black-box software

Source: Stewart, 2000.
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What's Wrong with Classical Methods?

- Nothing... unless the matrices are large-scale
: Problem: Major cost for numerical algorithms is data transfer
¢ One Solution: Design multiplication-rich algorithms

« Matrix multiplication is efficient in many architectures:

8 Graphics processing units
8 Multi-core and parallel processors
& Distributed systems

Source: Demmel and coauthors, 2003—present
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Truncated Singular Value Decomposition

A~ UXV* where U,V have orthonormal columns and X is diagonal:
n k n

m A m| U || X V* k

¢

Interpretation: k-SVD = optimal rank-k approximation

Applications:
- | east-squares computations

« Principal component analysis
s Summarization and data reduction
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Overview of Two-Stage Randomized Approach

Goal: Compute the £-SVD of an input matrix A

Stage A: Finding the range

- Use a randomized algorithm to compute a k-dimensional basis (Q that

captures most of the range of A:

(Q has orthonormal columns and A =~ QQ"A.

Stage B: Constructing the decomposition

@ Use the basis (Q to reduce the problem size
« Apply classical SVD algorithm to the reduced problem
¢ Obtain k-SVD in factored form
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Total Costs for Approximate k-SVD

Two-Stage Randomized Algorithm:

2 multiplies (m xn x k) + k*(m+n) flops

Classical Sparse Methods (Krylov):

k multiplies (m xn x 1) + k*(m+n) flops

Classical Dense Methods (RRQR + full SVD):

Not based on multiplies + mnk flops

Similar approaches produce partial QR, Cholesky, column subsets, ...
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Randomized Range Finder: Intuition
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Prototype for Randomized Range Finder

Input: An m X n matrix A, number ¢ of samples

Output: An m x £ matrix Q with orthonormal columns

1. Draw an n x £ random matrix 2.
2. Form the matrix product Y = A.
3. Construct an orthonormal basis () for the range of Y.

Total Cost: 1 multiply (m x n x £) + O(£?n) flops

Sources: NLA community: Stewart (1970s). GFA: Johnson—-Lindenstrauss (1984) et seq.
TCS: Boutsidis, Deshpande, Drineas, Frieze, Kannan, Mahoney, Papadimitriou, Sarlds,

Vempala (1998—present). SciComp: Martinsson, Rokhlin, Szlam, Tygert (2004—present).
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Implementation Issues

: How do we pick the number of samples £7?

: Adaptively, using a randomized error estimator.

: How does the number ¢ of samples compare with the target rank k7

Remarkably, { = k 4+ 5 or £ = k + 10 is usually adequate!

- What random matrix €27

For many applications, standard Gaussian works brilliantly.

: How do we perform the matrix—matrix multiply?

: Exploit the computational architecture.

: How do we compute the orthonormal basis?

> 0 >» 0 > O > O > O

: Carefully... Double Gram—Schmidt or Householder reflectors.
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Approximating a Helmholtz Integral Operator

Approximation errors
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Error Bound for Randomized Range Finder

Theorem 1. [HMT 2009] Assume

the matrix A is m X n with m > n;
the target rank is k;

7

the optima/ error og+1 — minrank(B)Sk HA — B
the test matrix €2 is n X (k + p) standard Gaussian.

I

Then the basis (Q computed by the randomized range finder satisfies

) 4k Fp
E|A-QQA| < |1+ p_lpw Okt

The probability of a substantially larger error is negligible.
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Randomized Range Finder + Power Scheme

Problem: The singular values of a data matrix often decay slowly

Remedy: Apply the randomized range finder to (AA*)?A for small g

Input: An m X n matrix A, number ¢ of samples

Output: An m x £ matrix Q with orthonormal columns

1. Draw an n x £ random matrix 2.
2. Carefully form the matrix product Y = (AA*)7AQ.
3. Construct an orthonormal basis Q for the range of Y.

Total Cost: 2¢ + 1 multiplies (m x n x £) + O(qgf?*n)

Finding Structure with Randomness, SAHD, Durham, 27 July 2011 15



Eigenfaces

« Database consists of 7,254 photographs with 98, 304 pixels each
Form 98,304 x 7,254 data matrix A

:a Total storage: 5.4 Gigabytes (uncompressed)

¢

:8 Center each column and scale to unit norm to obtain A

« The dominant left singular vectors are called eigenfaces
@ Attempt to compute first 100 eigenfaces using power scheme

Source: Image from Scholarpedia article “Eigenfaces,” accessed 12 October 2009
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Error Bound for Power Scheme

Theorem 2. [HMT 2009] Assume

the matrix A ism X n with m > n;
the target rank is k;

the optima/ error og+1 — minrank(B)Sk HA — B ,
the test matrix €2 is n X (k + p) standard Gaussian.

O

Then the basis (Q computed by the power scheme satisfies

ElA-QQ*A[ < |1 Ok41-

1/(2g+1)
4/ k +
— 1p -V

« The power scheme drives the extra factor to one exponentially fast!
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To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Papers:

@ HMT, “Finding structure with randomness: Probabilistic algorithms for computing
approximate matrix decompositions,” SIREV 2011
@ T, “Improved analysis of the subsampled randomized Hadamard transform,”

Adv. Adapt. Data Anal., to appear
@ T, “User-friendly tail bounds for sums of random matrices,” Found. Comput. Math.,

to appear
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