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Top 10 Scientific Algorithms

Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.
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The Decompositional Approach

“The underlying principle of the decompositional approach to matrix

computation is that it is not the business of the matrix algorithmicists

to solve particular problems but to construct computational

platforms from which a variety of problems can be solved.”

§ A decomposition solves not one but many problems

§ Often expensive to compute but can be reused

§ Shows that apparently different algorithms produce the same object

§ Facilitates rounding-error analysis

§ Can be updated efficiently to reflect new information

§ Has led to highly effective black-box software

Source: Stewart, 2000.
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What’s Wrong with Classical Methods?

§ Nothing... unless the matrices are large-scale

§ Problem: Major cost for numerical algorithms is data transfer

§ One Solution: Design multiplication-rich algorithms

§ Matrix multiplication is efficient in many architectures:

§ Graphics processing units

§ Multi-core and parallel processors

§ Distributed systems

Source: Demmel and coauthors, 2003–present
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Truncated Singular Value Decomposition

A ≈ UΣV ∗ where U ,V have orthonormal columns and Σ is diagonal:

Interpretation: k-SVD = optimal rank-k approximation

Applications:

§ Least-squares computations

§ Principal component analysis

§ Summarization and data reduction

§ ...
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Overview of Two-Stage Randomized Approach

Goal: Compute the k-SVD of an input matrix A

Stage A: Finding the range

§ Use a randomized algorithm to compute a k-dimensional basis Q that

captures most of the range of A:

Q has orthonormal columns and A ≈ QQ∗A.

Stage B: Constructing the decomposition

§ Use the basis Q to reduce the problem size

§ Apply classical SVD algorithm to the reduced problem

§ Obtain k-SVD in factored form
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Total Costs for Approximate k-SVD

Two-Stage Randomized Algorithm:

2 multiplies (m× n× k) + k2(m+ n) flops

Classical Sparse Methods (Krylov):

k multiplies (m× n× 1) + k2(m+ n) flops

Classical Dense Methods (RRQR + full SVD):

Not based on multiplies + mnk flops

Similar approaches produce partial QR, Cholesky, column subsets, ...

Finding Structure with Randomness, SAHD, Durham, 27 July 2011 8



.

Randomized.
Range Finder

Finding Structure with Randomness, SAHD, Durham, 27 July 2011 9



Randomized Range Finder: Intuition
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Prototype for Randomized Range Finder

Input: An m× n matrix A, number ` of samples

Output: An m× ` matrix Q with orthonormal columns

1. Draw an n× ` random matrix Ω.

2. Form the matrix product Y = AΩ.

3. Construct an orthonormal basis Q for the range of Y .

Total Cost: 1 multiply (m× n× `) + O(`2n) flops

Sources: NLA community: Stewart (1970s). GFA: Johnson–Lindenstrauss (1984) et seq.

TCS: Boutsidis, Deshpande, Drineas, Frieze, Kannan, Mahoney, Papadimitriou, Sarlós,

Vempala (1998–present). SciComp: Martinsson, Rokhlin, Szlam, Tygert (2004–present).
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Implementation Issues

Q: How do we pick the number of samples `?

A: Adaptively, using a randomized error estimator.

Q: How does the number ` of samples compare with the target rank k?

A: Remarkably, ` = k + 5 or ` = k + 10 is usually adequate!

Q: What random matrix Ω?

A: For many applications, standard Gaussian works brilliantly.

Q: How do we perform the matrix–matrix multiply?

A: Exploit the computational architecture.

Q: How do we compute the orthonormal basis?

A: Carefully... Double Gram–Schmidt or Householder reflectors.
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Approximating a Helmholtz Integral OperatorRANDOMIZED ALGORITHMS FOR MATRIX APPROXIMATION 39
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Fig. 7.4. Approximating a Helmholtz integral operator. One execution of Algorithm 4.2 for
the 400× 400 input matrix B described in §7.1. See Figure 7.2 for notations.
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Fig. 7.5. Error statistics for approximating a Helmholtz integral operator. 2,000 trials of
Algorithm 4.2 applied to a 400×400 matrix approximation the integral operator (7.2). See Figure 7.3
for notations.
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Error Bound for Randomized Range Finder

Theorem 1. [HMT 2009] Assume

§ the matrix A is m× n with m ≥ n;

§ the target rank is k;

§ the optimal error σk+1 = minrank(B)≤k ‖A−B‖;
§ the test matrix Ω is n× (k + p) standard Gaussian.

Then the basis Q computed by the randomized range finder satisfies

E ‖A−QQ∗A‖ ≤
[
1 +

4
√
k + p

p− 1
· √n

]
σk+1.

The probability of a substantially larger error is negligible.
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Randomized Range Finder + Power Scheme

Problem: The singular values of a data matrix often decay slowly

Remedy: Apply the randomized range finder to (AA∗)qA for small q

Input: An m× n matrix A, number ` of samples

Output: An m× ` matrix Q with orthonormal columns

1. Draw an n× ` random matrix Ω.

2. Carefully form the matrix product Y = (AA∗)qAΩ.

3. Construct an orthonormal basis Q for the range of Y .

Total Cost: 2q + 1 multiplies (m× n× `) + O(q`2n)
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Eigenfaces

§ Database consists of 7, 254 photographs with 98, 304 pixels each

§ Form 98, 304× 7, 254 data matrix Ã

§ Total storage: 5.4 Gigabytes (uncompressed)

§ Center each column and scale to unit norm to obtain A

§ The dominant left singular vectors are called eigenfaces

§ Attempt to compute first 100 eigenfaces using power scheme

Source: Image from Scholarpedia article “Eigenfaces,” accessed 12 October 2009
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matrix.
Our goal then is to compute an approximate SVD of the matrix A. Represented

as an array of double-precision real numbers, A would require 5.4GB of storage, which
does not fit within the fast memory of many machines. It is possible to compress the
database down to at 57MB or less (in JPEG format), but then the data would have
to be uncompressed with each sweep over the matrix. Furthermore, the matrix A has
slowly decaying singular values, so we need to use the power scheme, Algorithm 4.3,
to capture the range of the matrix accurately.

To address these concerns, we implemented the power scheme to run in a pass-
efficient manner. An additional difficulty arises because the size of the data makes it
prohibitively expensive to calculate the actual error e` incurred by the approximation
or to determine the minimal error σ`+1. To estimate the errors, we use the technique
described in Remark 4.1.

Figure 7.8 describes the behavior of the power scheme, which is similar to its
performance for the graph Laplacian in §7.3. When the exponent q = 0, the ap-
proximation of the data matrix is very poor, but it improves quickly as q increases.
Likewise, the estimate for the spectrum of A appears to converge rapidly; the largest
singular values are already quite accurate when q = 1. We see essentially no improve-
ment in the estimates after the first 3–5 passes over the matrix.
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Fig. 7.8. Computing eigenfaces. For varying exponent q, one trial of the power scheme,
Algorithm 4.3, applied to the 98, 304 × 7, 254 matrix A described in §7.4. (Left) Approximation
errors as a function of the number ` of random samples. The red line indicates the minimal errors
as estimated by the singular values computed using ` = 100 and q = 3. (Right) Estimates for the
100 largest eigenvalues given ` = 100 random samples.

7.5. Performance of structured random matrices. Our final set of experi-
ments illustrates that the structured random matrices described in §4.6 lead to matrix
approximation algorithms that are both fast and accurate.

Total number of samples Rank of singular value
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Error Bound for Power Scheme

Theorem 2. [HMT 2009] Assume

§ the matrix A is m× n with m ≥ n;

§ the target rank is k;

§ the optimal error σk+1 = minrank(B)≤k ‖A−B‖;
§ the test matrix Ω is n× (k + p) standard Gaussian.

Then the basis Q computed by the power scheme satisfies

E ‖A−QQ∗A‖ ≤
[
1 +

4
√
k + p

p− 1
· √n

]1/(2q+1)

σk+1.

§ The power scheme drives the extra factor to one exponentially fast!
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To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Papers:

§ HMT, “Finding structure with randomness: Probabilistic algorithms for computing

approximate matrix decompositions,” SIREV 2011

§ T, “Improved analysis of the subsampled randomized Hadamard transform,”

Adv. Adapt. Data Anal., to appear

§ T, “User-friendly tail bounds for sums of random matrices,” Found. Comput. Math.,

to appear
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