Finding Structure with Randomness

Joel A. Tropp

Computing + Mathematical Sciences
California Institute of Technology jtropp@cms.caltech.edu

Joint with P.-G. Martinsson and N. Halko

Applied Mathematics, Univ. Colorado at Boulder

Top 10 Scientific Algorithms

 VVC'
the articles appear in no particular order):
enc

- Metropolis Algorithm for Montc Carlovol
- Simplex Mcthod for Lincar Programming of
- Krylov Subspace Iteration Mcthods way
- The Decompositional Approach to Matrix eve Computations rela
- The Fortran Optimizing Compiler pro
- QR Algorithm for Computing Eigenvalues are
- Quicksort Algorithm for Sorting hig
- Fast Fourier Transform J
- Integer Relation Detection ing
- Fast Multipole Method wor
plas
With each of these algorithms or approaches, there wh: is a neronn or oromen receivino credit for inventino or not

Source: Dongarra and Sullivan, Comput. Sci. Eng., 2000.

The Decompositional Approach

"The underlying principle of the decompositional approach to matrix computation is that it is not the business of the matrix algorithmicists to solve particular problems but to construct computational platforms from which a variety of problems can be solved."

A decomposition solves not one but many problems
Often expensive to compute but can be reused
Shows that apparently different algorithms produce the same object
Facilitates rounding-error analysis
Can be updated efficiently to reflect new information
Has led to highly effective black-box software

Source: Stewart, 2000.

What's Wrong with Classical Methods?

Nothing... unless the matrices are large-scale

Problem: Major cost for numerical algorithms is data transfer

One Solution: Design multiplication-rich algorithms

Matrix multiplication is efficient in many architectures:
© Graphics processing units
Multi-core and parallel processors
Distributed systems

Source: Demmel and coauthors, 2003-present

Randomized Truncated SVD

Truncated Singular Value Decomposition

$\boldsymbol{A} \approx \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$ where $\boldsymbol{U}, \boldsymbol{V}$ have orthonormal columns and $\boldsymbol{\Sigma}$ is diagonal:

Interpretation: k-SVD $=$ optimal rank- k approximation

Applications:

Le Least-squares computations
© Principal component analysis
Summarization and data reduction
c...

Overview of Two-Stage Randomized Approach

Goal: Compute the k-SVD of an input matrix \boldsymbol{A}

Stage A: Finding the range
Use a randomized algorithm to compute a k-dimensional basis Q that captures most of the range of \boldsymbol{A} :
Q has orthonormal columns and $A \approx Q Q^{*} A$.

Stage B: Constructing the decomposition
Use the basis Q to reduce the problem size
Apply classical SVD algorithm to the reduced problem
Obtain k-SVD in factored form

Total Costs for Approximate k-SVD

Two-Stage Randomized Algorithm:

$$
2 \text { multiplies }(m \times n \times k)+k^{2}(m+n) \text { flops }
$$

Classical Sparse Methods (Krylov):
k multiplies $(m \times n \times 1)+k^{2}(m+n)$ flops

Classical Dense Methods (RRQR + full SVD):

$$
\text { Not based on multiplies }+m n k \text { flops }
$$

Similar approaches produce partial QR, Cholesky, column subsets, ...

Randomized

 Range Finder
Randomized Range Finder: Intuition

Prototype for Randomized Range Finder

Input: An $m \times n$ matrix \boldsymbol{A}, number ℓ of samples
Output: An $m \times \ell$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times \ell$ random matrix $\boldsymbol{\Omega}$.
2. Form the matrix product $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\Omega}$.
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}.

Total Cost: 1 multiply $(m \times n \times \ell)+\mathrm{O}\left(\ell^{2} n\right)$ flops
Sources: NLA community: Stewart (1970s). GFA: Johnson-Lindenstrauss (1984) et seq.
TCS: Boutsidis, Deshpande, Drineas, Frieze, Kannan, Mahoney, Papadimitriou, Sarlós,
Vempala (1998-present). SciComp: Martinsson, Rokhlin, Szlam, Tygert (2004-present).

Implementation Issues

Q: How do we pick the number of samples ℓ ?
A: Adaptively, using a randomized error estimator.
Q: How does the number ℓ of samples compare with the target rank k ?
A: Remarkably, $\ell=k+5$ or $\ell=k+10$ is usually adequate!
Q: What random matrix $\boldsymbol{\Omega}$?
A: For many applications, standard Gaussian works brilliantly.
Q: How do we perform the matrix-matrix multiply?
A: Exploit the computational architecture.
Q: How do we compute the orthonormal basis?
A: Carefully... Double Gram-Schmidt or Householder reflectors.

Approximating a Helmholtz Integral Operator

Error Bound for Randomized Range Finder

Theorem 1. [HMT 2009] Assume

the matrix \boldsymbol{A} is $m \times n$ with $m \geq n$;
the target rank is k;
se the optimal error $\sigma_{k+1}=\min _{\operatorname{rank}(\boldsymbol{B}) \leq k}\|\boldsymbol{A}-\boldsymbol{B}\|$;
the test matrix $\boldsymbol{\Omega}$ is $n \times(k+p)$ standard Gaussian.

Then the basis Q computed by the randomized range finder satisfies

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{k+p}}{p-1} \cdot \sqrt{n}\right] \sigma_{k+1}
$$

The probability of a substantially larger error is negligible.

Randomized Range Finder + Power Scheme

Problem: The singular values of a data matrix often decay slowly
Remedy: Apply the randomized range finder to $\left(\boldsymbol{A} \boldsymbol{A}^{*}\right)^{q} \boldsymbol{A}$ for small q

Input: An $m \times n$ matrix \boldsymbol{A}, number ℓ of samples
Output: An $m \times \ell$ matrix \boldsymbol{Q} with orthonormal columns

1. Draw an $n \times \ell$ random matrix $\boldsymbol{\Omega}$.
2. Carefully form the matrix product $\boldsymbol{Y}=\left(\boldsymbol{A} \boldsymbol{A}^{*}\right)^{q} \boldsymbol{A} \boldsymbol{\Omega}$.
3. Construct an orthonormal basis \boldsymbol{Q} for the range of \boldsymbol{Y}.

Total Cost: $2 q+1$ multiplies $(m \times n \times \ell)+\mathrm{O}\left(q \ell^{2} n\right)$

Eigenfaces

Database consists of 7,254 photographs with 98,304 pixels each
5. Form $98,304 \times 7,254$ data matrix $\widetilde{\boldsymbol{A}}$

Total storage: 5.4 Gigabytes (uncompressed)
Center each column and scale to unit norm to obtain \boldsymbol{A}
se The dominant left singular vectors are called eigenfaces
Attempt to compute first 100 eigenfaces using power scheme

Source: Image from Scholarpedia article "Eigenfaces," accessed 12 October 2009

Total number of samples

Rank of singular value

Error Bound for Power Scheme

Theorem 2. [HMT 2009] Assume

the matrix \boldsymbol{A} is $m \times n$ with $m \geq n$;
the target rank is k;
the optimal error $\sigma_{k+1}=\min _{\operatorname{rank}(\boldsymbol{B}) \leq k}\|\boldsymbol{A}-\boldsymbol{B}\|$;
the test matrix $\boldsymbol{\Omega}$ is $n \times(k+p)$ standard Gaussian.
Then the basis Q computed by the power scheme satisfies

$$
\mathbb{E}\left\|\boldsymbol{A}-\boldsymbol{Q} \boldsymbol{Q}^{*} \boldsymbol{A}\right\| \leq\left[1+\frac{4 \sqrt{k+p}}{p-1} \cdot \sqrt{n}\right]^{1 /(2 q+1)} \sigma_{k+1}
$$

The power scheme drives the extra factor to one exponentially fast!

To learn more...

E-mail: jtropp@cms.caltech.edu
Web: http://users.cms.caltech.edu/~jtropp

Papers:

HMT, "Finding structure with randomness: Probabilistic algorithms for computing approximate matrix decompositions," SIREV 2011
T, "Improved analysis of the subsampled randomized Hadamard transform," Adv. Adapt. Data Anal., to appear
T, "User-friendly tail bounds for sums of random matrices," Found. Comput. Math., to appear

