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Preliminaries

Sparse recovery

x̂ = R(Φx + ν) ≈ x

Approximate best k-term signal; length is N

-x Measure -Φx ����
+

6ν

-Φx + ν
Recover -x̂
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Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)

Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).

Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.

(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26



Preliminaries

Some results

Paper No. meas. time norm

[GSTV07] k polylog poly(k logN) 2

[Donoho04] k log(N/k) poly(N) 2
[CRT04]

[RI08] k log(N/k) N log(N/k) 1

Here/In progress k log(N/k) poly(k logN) 1

Red is optimal.

Here is http://arxiv.org/abs/1012.1886v2

Other models by: Xu-Hassibi, Caldebank-Howard-Jafarpour,
Gilbert-Li-P-S, ...
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Preliminaries Problem we are addressing

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:


7
0
7
0

 ≈


Reference
Small
BIG

Small

 =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1



·



noise
noise

7
noise
noise
noise
noise
noise


6
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Preliminaries Problem we are addressing

Techniques for some sublinear algorithms

Hash into k buckets (hope to isolate HH’s with low noise)

H =

(
0 1 0 0 1 1 1 0
1 0 0 1 0 0 0 0

)
Group testing on 1-sparse signal.

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


Typically lose log factor in meas. Top row of H becomes:

0 1 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
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Algorithm

Algorithm

Hash into B =
√
kN buckets;

Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times;

collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���

H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY
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Result and Analysis

Result

Theorem

Algorithm takes ≈
√
kN time and uses k log(N/k) measurements.

Need to show:

Number of measurements and runtime—done.

Correctness of Hashing procedure

Why 2 = log(N/k)/ log(B/k) repetitions?
Why do we get (≈ k,B)-signal?

Correctness of recursive solution—easy

Correctness of lifting—easy by (lazy) design (use of table)
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Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.
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)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.
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Result and Analysis

More generally...

Cascade through any chosen number ` of levels.

poly(`) problems with parameters (k, k(N/k)1/`)

Time around poly(`)k(N/k)1/`

Number of measurements is around poly(`)k log(N/k)

x , length N• •
@
@R ?

�
�	

@
@R ?

�
�	

@
@R ?

�
�	Random hash

x (1) length k(N/k)1/`• •
�

�	 ?
@
@R

�
�	 ?
@
@R

�
�	 ?

@
@RDeterministic split, 1-to-(N/k)1/`

x (2) length k(N/k)2/`• •
�
�	 ?
@
@R

�
�	 ?
@
@R

�
�	 ?
@
@R

�
�	 ?
@
@RDeterministic split, 1-to-(N/k)1/`

x (3) length k(N/k)3/`• •

...
... �

�	 ?
@
@R

�
�	 ?
@
@R

x (`) = x , length N• •
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Next Results Avoid lookup table

Avoid lookup table

When we recover heavy hitter i ,

...can also get arbitrary O(log(B/k))-bit message!

(Partially) codes pointer back to i ′ ∈ [N].

No need to store back pointer: [B]→ [N] explicitly in table.
Only need to use hash function forwards: [N]→ [B].
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Next Results Avoid lookup table

Sparse recovery channel—The medium is the message

Encoder

ΦP
PP

PP
Pi

��
��

��1

Decoder

-
m

-
Φ′

��
��
�
@

@
�

?

x , ν

-
Φ′x + ν

-
m̂ : m̂ ≈x m

Encoder and Decoder agree on Φ (independent of message)

Message m of length B and alphabet size B/k

Encoder makes final measurement matrix Φ′ from Φ and m

Channel picks x and ν(6= 0?) and produces Φ′x + ν.

Decoder tries to recover m in x-weighted sense; need m̂i ≈ mi for
many i such that |xi | is large. (Decoder doesn’t know x .)
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Next Results Avoid lookup table

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:(
0 1 0 0 1 1 1 0

)
1-bit message (

0 1 0 0 0 1 0 0
)

Leads to (
0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0

)

With k log(B/k) measurements, log(B/k) lossy chances to code bits.

With ECC, get log(B/k)(≈ logN?)-bit msg for each HH.

Use message to lift solution, rather than explicit lookup table.
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Next Results Faster runtime

Three kinds of information

Algorithm:

Hash into B buckets

Repeat r = log(N/k)/ log(N/B) times

Solve recursively

Need logN bits of backpointer hash−1 :→ [N].

j ’th repetition, j = 1, 2, . . . , r , gives tuple of

log(B/k) codeable bits mi

j (side information)

Index ij ∈ [B] of recursive heavy hitter in j ’th repetition (logB
non-codeable bits)

Code payload and linking information into mi and assemble.
How?
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Network Coding—wake up!
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Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.

Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26



Network Coding—wake up!

Multiple-stream network coding problem

Unordered set of k messages (movies), length n, transmitted
simultaneously.

Total kn bits. Want to recover from O(nk) total bits, avoiding log k
header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another
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Network Coding—wake up! Conclusion

Upcoming results

Theorem

There’s an algorithm that runs in time k logO(1)N, uses O(k logN/k)
measurements, and returns x̂ with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

(Joint with Anna Gilbert, Yi Li, Ely Porat)

Can this be improved with better error-correcting codes?
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Conclusion

Conclusion

First sublinear-time algo with optimal measurements in forall model,
with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1

Time
√
kN, improveable (?) to poly(k, logN)

Lookup table of size Nk1/4, removeable (?)

Finale is open: Improve to 2-norm:

‖x − x̂‖2 ≤
ε√
k
‖x − xk‖1.
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