
Sublinear Time, Measurement-Optimal, Sparse Recovery
For All

Martin J. Strauss

University of Michigan

Joint with Ely Porat, Bar Ilan

Preliminaries

Outline

1 Preliminaries
Problem we are addressing

2 Algorithm

3 Result and Analysis

4 Next Results
Avoid lookup table
Faster runtime

5 Network Coding—wake up!
Conclusion

6 Conclusion

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 2 / 26

Preliminaries

Sparse recovery

x̂ = R(Φx + ν) ≈ x

Approximate best k-term signal; length is N

-x Measure -Φx ����
+

6ν

-Φx + ν
Recover -x̂

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 3 / 26

Preliminaries

Some criteria of algorithms

Speed

Accuracy

Number of measurements

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 4 / 26

Preliminaries

Some criteria of algorithms

Speed Accuracy

Number of measurements

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 4 / 26

Preliminaries

Some criteria of algorithms

Speed Accuracy

Number of measurements

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 4 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)

Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).

Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.

(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some criteria of algorithms

Number of measurements: want O(k logN/k) ≈ log
(N
k

)
Recovery runtime (speed):

want poly(k logN).
Faster than previous measurement-optimal algorithms.
(“sublinear time” algos lose to “superlinear” FFT every time.)

Accuracy—how much error, which norm, universality...our model:

Recover all signals in (smaller) `1 ball, by one matrix.

Norm of error

Want `2:
‖x − x̂‖2 ≤

ε√
k
‖x − xk‖1.

Here get only `1 (strictly worse):

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 5 / 26

Preliminaries

Some results

Paper No. meas. time norm

[GSTV07] k polylog poly(k logN) 2

[Donoho04] k log(N/k) poly(N) 2
[CRT04]

[RI08] k log(N/k) N log(N/k) 1

Here/In progress k log(N/k) poly(k logN) 1

Red is optimal.

Here is http://arxiv.org/abs/1012.1886v2

Other models by: Xu-Hassibi, Caldebank-Howard-Jafarpour,
Gilbert-Li-P-S, ...

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 6 / 26

http://arxiv.org/abs/1012.1886v2

Preliminaries

Some results

Paper No. meas. time norm

[GSTV07] k polylog poly(k logN) 2

[Donoho04] k log(N/k) poly(N) 2
[CRT04]

[RI08] k log(N/k) N log(N/k) 1

Here/In progress k log(N/k) poly(k logN) 1

Red is optimal.

Here is http://arxiv.org/abs/1012.1886v2

Other models by: Xu-Hassibi, Caldebank-Howard-Jafarpour,
Gilbert-Li-P-S, ...

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 6 / 26

http://arxiv.org/abs/1012.1886v2

Preliminaries

Some results

Paper No. meas. time norm

[GSTV07] k polylog poly(k logN) 2

[Donoho04] k log(N/k) poly(N) 2
[CRT04]

[RI08] k log(N/k) N log(N/k) 1

Here/In progress k log(N/k) poly(k logN) 1
Red is optimal.
Here is http://arxiv.org/abs/1012.1886v2

Other models by: Xu-Hassibi, Caldebank-Howard-Jafarpour,
Gilbert-Li-P-S, ...

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 6 / 26

http://arxiv.org/abs/1012.1886v2

Preliminaries

Some results

Paper No. meas. time norm

[GSTV07] k polylog poly(k logN) 2

[Donoho04] k log(N/k) poly(N) 2
[CRT04]

[RI08] k log(N/k) N log(N/k) 1

Here/In progress k log(N/k) poly(k logN) 1
Red is optimal.
Here is http://arxiv.org/abs/1012.1886v2

Other models by: Xu-Hassibi, Caldebank-Howard-Jafarpour,
Gilbert-Li-P-S, ...

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 6 / 26

http://arxiv.org/abs/1012.1886v2

Preliminaries Problem we are addressing

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:

7
0
7
0

 ≈

Reference
Small
BIG

Small

 =

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

·

noise
noise

7
noise
noise
noise
noise
noise

6

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 7 / 26

Preliminaries Problem we are addressing

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:

7
0
7
0

 ≈

Reference
Small
BIG

Small

 =

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 ·

noise
noise

7
noise
noise
noise
noise
noise

6

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 7 / 26

Preliminaries Problem we are addressing

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:

7
0
7
0

 ≈

Reference
Small
BIG

Small

 =

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 ·

noise
noise

7
noise
noise
noise
noise
noise

6

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 7 / 26

Preliminaries Problem we are addressing

Techniques for some sublinear algorithms

Hash into k buckets (hope to isolate HH’s with low noise)

H =

(
0 1 0 0 1 1 1 0
1 0 0 1 0 0 0 0

)
Group testing on 1-sparse signal.

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Typically lose log factor in meas. Top row of H becomes:

0 1 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 8 / 26

Algorithm

Outline

1 Preliminaries
Problem we are addressing

2 Algorithm

3 Result and Analysis

4 Next Results
Avoid lookup table
Faster runtime

5 Network Coding—wake up!
Conclusion

6 Conclusion

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 9 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets;

Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times;

collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���

H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate;

Measure

Repeat log(N/k)/ log(B/k) = 2 times;

collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���

H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times;

collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���

H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times;

collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���
H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?

PPPPq
����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times; collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���
H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times; collect measurements

Recursively solve, naively.

Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���
H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times; collect measurements

Recursively solve, naively. Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���
H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times; collect measurements

Recursively solve, naively. Time ≈ length = B =
√
kN

Lift solution (from table).

Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���
H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Algorithm

Algorithm

Hash into B =
√
kN buckets; Aggregate; Measure

Repeat log(N/k)/ log(B/k) = 2 times; collect measurements

Recursively solve, naively. Time ≈ length = B =
√
kN

Lift solution (from table). Time ≈ no. preimages = k(N/B) =
√
kN

(k,N)
�

���
H
HHj

Hash

Aggregate

Measure

Collect

(≈ k ,B)

k log(B/k)

k log(N/k)

HHHj ?
����

?

HHHj ?
����

?
PPPPq

����)

6

6

HH
HY

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 10 / 26

Result and Analysis

Outline

1 Preliminaries
Problem we are addressing

2 Algorithm

3 Result and Analysis

4 Next Results
Avoid lookup table
Faster runtime

5 Network Coding—wake up!
Conclusion

6 Conclusion

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 11 / 26

Result and Analysis

Result

Theorem

Algorithm takes ≈
√
kN time and uses k log(N/k) measurements.

Need to show:

Number of measurements and runtime—done.

Correctness of Hashing procedure

Why 2 = log(N/k)/ log(B/k) repetitions?
Why do we get (≈ k,B)-signal?

Correctness of recursive solution—easy

Correctness of lifting—easy by (lazy) design (use of table)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 12 / 26

Result and Analysis

Result

Theorem

Algorithm takes ≈
√
kN time and uses k log(N/k) measurements.

Need to show:

Number of measurements and runtime—done.

Correctness of Hashing procedure

Why 2 = log(N/k)/ log(B/k) repetitions?
Why do we get (≈ k ,B)-signal?

Correctness of recursive solution—easy

Correctness of lifting—easy by (lazy) design (use of table)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 12 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B

≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

Correctness of Hashing

Lemma

Intermediate signal is indeed ≈ k-sparse and length B.

Each heavy hitter is isolated except with prob k/B.

≥ k/2 fail with prob (k/B)k = 2−k log(B/k)

Heavy hitters land in set S of about k of B buckets. Consider t noise
items of size 1/t:

Each noise item lands in S with prob k/B
≥ t/2 noise items land in S with prob (k/B)t = 2−t log(B/k)

(Otherwise, enough of S survives)

Repeat log(N/k)/ log(B/k) times

Failure probs drop to (k/N)k ≤
(
N
k

)−1
and (k/N)t ≤

(
N
t

)−1

Take union bound.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 13 / 26

Result and Analysis

More generally...

Cascade through any chosen number ` of levels.

poly(`) problems with parameters (k, k(N/k)1/`)

Time around poly(`)k(N/k)1/`

Number of measurements is around poly(`)k log(N/k)

x , length N• •
@
@R ?

�
�	

@
@R ?

�
�	

@
@R ?

�
�	Random hash

x (1) length k(N/k)1/`• •
�

�	 ?
@
@R

�
�	 ?
@
@R

�
�	 ?

@
@RDeterministic split, 1-to-(N/k)1/`

x (2) length k(N/k)2/`• •
�
�	 ?
@
@R

�
�	 ?
@
@R

�
�	 ?
@
@R

�
�	 ?
@
@RDeterministic split, 1-to-(N/k)1/`

x (3) length k(N/k)3/`• •

...
... �

�	 ?
@
@R

�
�	 ?
@
@R

x (`) = x , length N• •

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 14 / 26

Next Results

Outline

1 Preliminaries
Problem we are addressing

2 Algorithm

3 Result and Analysis

4 Next Results
Avoid lookup table
Faster runtime

5 Network Coding—wake up!
Conclusion

6 Conclusion

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 15 / 26

Next Results

What’s next?

(Joint with Anna Gilbert, Yi Li, Ely Porat)

Avoid lookup table

Lower runtime from poly(`)k(N/k)1/` to poly(k , logN)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 16 / 26

Next Results

What’s next?

(Joint with Anna Gilbert, Yi Li, Ely Porat)

Avoid lookup table

Lower runtime from poly(`)k(N/k)1/` to poly(k , logN)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 16 / 26

Next Results

What’s next?

(Joint with Anna Gilbert, Yi Li, Ely Porat)

Avoid lookup table

Lower runtime from poly(`)k(N/k)1/` to poly(k , logN)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 16 / 26

Next Results Avoid lookup table

Avoid lookup table

When we recover heavy hitter i ,

...can also get arbitrary O(log(B/k))-bit message!

(Partially) codes pointer back to i ′ ∈ [N].

No need to store back pointer: [B]→ [N] explicitly in table.
Only need to use hash function forwards: [N]→ [B].

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 17 / 26

Next Results Avoid lookup table

Avoid lookup table

When we recover heavy hitter i ,

...can also get arbitrary O(log(B/k))-bit message!

(Partially) codes pointer back to i ′ ∈ [N].

No need to store back pointer: [B]→ [N] explicitly in table.
Only need to use hash function forwards: [N]→ [B].

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 17 / 26

Next Results Avoid lookup table

Avoid lookup table

When we recover heavy hitter i ,

...can also get arbitrary O(log(B/k))-bit message!

(Partially) codes pointer back to i ′ ∈ [N].

No need to store back pointer: [B]→ [N] explicitly in table.
Only need to use hash function forwards: [N]→ [B].

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 17 / 26

Next Results Avoid lookup table

Avoid lookup table

When we recover heavy hitter i ,

...can also get arbitrary O(log(B/k))-bit message!

(Partially) codes pointer back to i ′ ∈ [N].

No need to store back pointer: [B]→ [N] explicitly in table.

Only need to use hash function forwards: [N]→ [B].

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 17 / 26

Next Results Avoid lookup table

Avoid lookup table

When we recover heavy hitter i ,

...can also get arbitrary O(log(B/k))-bit message!

(Partially) codes pointer back to i ′ ∈ [N].

No need to store back pointer: [B]→ [N] explicitly in table.
Only need to use hash function forwards: [N]→ [B].

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 17 / 26

Next Results Avoid lookup table

Sparse recovery channel—The medium is the message

Encoder

ΦP
PP

PP
Pi

��
��

��1

Decoder

-
m

-
Φ′

��
��
�
@

@
�

?

x , ν

-
Φ′x + ν

-
m̂ : m̂ ≈x m

Encoder and Decoder agree on Φ (independent of message)

Message m of length B and alphabet size B/k

Encoder makes final measurement matrix Φ′ from Φ and m

Channel picks x and ν(6= 0?) and produces Φ′x + ν.

Decoder tries to recover m in x-weighted sense; need m̂i ≈ mi for
many i such that |xi | is large. (Decoder doesn’t know x .)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 18 / 26

Next Results Avoid lookup table

Sparse recovery channel—The medium is the message

Encoder

ΦP
PP

PP
Pi

��
��

��1

Decoder-
m

-
Φ′

��
��
�
@

@
�

?

x , ν

-
Φ′x + ν

-
m̂ : m̂ ≈x m

Encoder and Decoder agree on Φ (independent of message)

Message m of length B and alphabet size B/k

Encoder makes final measurement matrix Φ′ from Φ and m

Channel picks x and ν(6= 0?) and produces Φ′x + ν.

Decoder tries to recover m in x-weighted sense; need m̂i ≈ mi for
many i such that |xi | is large. (Decoder doesn’t know x .)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 18 / 26

Next Results Avoid lookup table

Sparse recovery channel—The medium is the message

Encoder

ΦP
PP

PP
Pi

��
��

��1

Decoder-
m

-
Φ′

��
��
�
@

@
�

?

x , ν

-
Φ′x + ν

-
m̂ : m̂ ≈x m

Encoder and Decoder agree on Φ (independent of message)

Message m of length B and alphabet size B/k

Encoder makes final measurement matrix Φ′ from Φ and m

Channel picks x and ν(6= 0?) and produces Φ′x + ν.

Decoder tries to recover m in x-weighted sense; need m̂i ≈ mi for
many i such that |xi | is large. (Decoder doesn’t know x .)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 18 / 26

Next Results Avoid lookup table

Sparse recovery channel—The medium is the message

Encoder

ΦP
PP

PP
Pi

��
��

��1

Decoder-
m

-
Φ′

��
��
�
@

@
�

?

x , ν

-
Φ′x + ν

-
m̂ : m̂ ≈x m

Encoder and Decoder agree on Φ (independent of message)

Message m of length B and alphabet size B/k

Encoder makes final measurement matrix Φ′ from Φ and m

Channel picks x and ν(6= 0?) and produces Φ′x + ν.

Decoder tries to recover m in x-weighted sense; need m̂i ≈ mi for
many i such that |xi | is large. (Decoder doesn’t know x .)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 18 / 26

Next Results Avoid lookup table

Sparse recovery channel—The medium is the message

Encoder

ΦP
PP

PP
Pi

��
��

��1

Decoder-
m

-
Φ′

��
��
�
@

@
�

?

x , ν

-
Φ′x + ν

-
m̂ : m̂ ≈x m

Encoder and Decoder agree on Φ (independent of message)

Message m of length B and alphabet size B/k

Encoder makes final measurement matrix Φ′ from Φ and m

Channel picks x and ν(6= 0?) and produces Φ′x + ν.

Decoder tries to recover m in x-weighted sense; need m̂i ≈ mi for
many i such that |xi | is large. (Decoder doesn’t know x .)

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 18 / 26

Next Results Avoid lookup table

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:(
0 1 0 0 1 1 1 0

)
1-bit message (

0 1 0 0 0 1 0 0
)

Leads to (
0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0

)

With k log(B/k) measurements, log(B/k) lossy chances to code bits.

With ECC, get log(B/k)(≈ logN?)-bit msg for each HH.

Use message to lift solution, rather than explicit lookup table.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 19 / 26

Next Results Avoid lookup table

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:(
0 1 0 0 1 1 1 0

)
1-bit message (

0 1 0 0 0 1 0 0
)

Leads to (
0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0

)
With k log(B/k) measurements, log(B/k) lossy chances to code bits.

With ECC, get log(B/k)(≈ logN?)-bit msg for each HH.

Use message to lift solution, rather than explicit lookup table.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 19 / 26

Next Results Avoid lookup table

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:(
0 1 0 0 1 1 1 0

)
1-bit message (

0 1 0 0 0 1 0 0
)

Leads to (
0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0

)
With k log(B/k) measurements, log(B/k) lossy chances to code bits.

With ECC, get log(B/k)(≈ logN?)-bit msg for each HH.

Use message to lift solution, rather than explicit lookup table.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 19 / 26

Next Results Avoid lookup table

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:(
0 1 0 0 1 1 1 0

)
1-bit message (

0 1 0 0 0 1 0 0
)

Leads to (
0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0

)
With k log(B/k) measurements, log(B/k) lossy chances to code bits.

With ECC, get log(B/k)(≈ logN?)-bit msg for each HH.

Use message to lift solution, rather than explicit lookup table.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 19 / 26

Next Results Faster runtime

Three kinds of information

Algorithm:

Hash into B buckets

Repeat r = log(N/k)/ log(N/B) times

Solve recursively

Need logN bits of backpointer hash−1 :→ [N].

j ’th repetition, j = 1, 2, . . . , r , gives tuple of

log(B/k) codeable bits mi

j (side information)

Index ij ∈ [B] of recursive heavy hitter in j ’th repetition (logB
non-codeable bits)

Code payload and linking information into mi and assemble.
How?

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 20 / 26

Next Results Faster runtime

Three kinds of information

Algorithm:

Hash into B buckets

Repeat r = log(N/k)/ log(N/B) times

Solve recursively

Need logN bits of backpointer hash−1 :→ [N].
j ’th repetition, j = 1, 2, . . . , r , gives tuple of

log(B/k) codeable bits mi

j (side information)

Index ij ∈ [B] of recursive heavy hitter in j ’th repetition (logB
non-codeable bits)

Code payload and linking information into mi and assemble.
How?

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 20 / 26

Next Results Faster runtime

Three kinds of information

Algorithm:

Hash into B buckets

Repeat r = log(N/k)/ log(N/B) times

Solve recursively

Need logN bits of backpointer hash−1 :→ [N].
j ’th repetition, j = 1, 2, . . . , r , gives tuple of

log(B/k) codeable bits mi

j (side information)

Index ij ∈ [B] of recursive heavy hitter in j ’th repetition (logB
non-codeable bits)

Code payload and linking information into mi and assemble.

How?

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 20 / 26

Next Results Faster runtime

Three kinds of information

Algorithm:

Hash into B buckets

Repeat r = log(N/k)/ log(N/B) times

Solve recursively

Need logN bits of backpointer hash−1 :→ [N].
j ’th repetition, j = 1, 2, . . . , r , gives tuple of

log(B/k) codeable bits mi

j (side information)

Index ij ∈ [B] of recursive heavy hitter in j ’th repetition (logB
non-codeable bits)

Code payload and linking information into mi and assemble.
How?

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 20 / 26

Network Coding—wake up!

Outline

1 Preliminaries
Problem we are addressing

2 Algorithm

3 Result and Analysis

4 Next Results
Avoid lookup table
Faster runtime

5 Network Coding—wake up!
Conclusion

6 Conclusion

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 21 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.

Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Network coding

First, network (rateless) coding:

Message (movie) of length n

Download for later viewing (not streamed, not DVD by mail, ...)

Flaky network—dropped connections (erasures) but no errors

Publisher breaks message into p packets, encodes, and broadcasts
continually

Subscriber needs any O(p) packets to recover message.

Punchline, e.g.,

Send ever-new points on graph of degree-p polynomial.
Any p + 1 points suffice.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 22 / 26

Network Coding—wake up!

Multiple-stream network coding problem

Unordered set of k messages (movies), length n, transmitted
simultaneously.

Total kn bits. Want to recover from O(nk) total bits, avoiding log k
header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 23 / 26

Network Coding—wake up!

Multiple-stream network coding problem

Unordered set of k messages (movies), length n, transmitted
simultaneously.
Total kn bits. Want to recover from O(nk) total bits, avoiding log k
header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 23 / 26

Network Coding—wake up!

Multiple-stream network coding problem

Unordered set of k messages (movies), length n, transmitted
simultaneously.
Total kn bits. Want to recover from O(nk) total bits, avoiding log k
header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 23 / 26

Network Coding—wake up!

Multiple-stream network coding problem

Unordered set of k messages (movies), length n, transmitted
simultaneously.
Total kn bits. Want to recover from O(nk) total bits, avoiding log k
header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 23 / 26

Network Coding—wake up!

Multiple-stream network coding problem

Unordered set of k messages (movies), length n, transmitted
simultaneously.
Total kn bits. Want to recover from O(nk) total bits, avoiding log k
header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 23 / 26

Network Coding—wake up! Conclusion

Upcoming results

Theorem

There’s an algorithm that runs in time k logO(1)N, uses O(k logN/k)
measurements, and returns x̂ with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

(Joint with Anna Gilbert, Yi Li, Ely Porat)

Can this be improved with better error-correcting codes?

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 24 / 26

Network Coding—wake up! Conclusion

Upcoming results

Theorem

There’s an algorithm that runs in time k logO(1)N, uses O(k logN/k)
measurements, and returns x̂ with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1.

(Joint with Anna Gilbert, Yi Li, Ely Porat)
Can this be improved with better error-correcting codes?

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 24 / 26

Conclusion

Outline

1 Preliminaries
Problem we are addressing

2 Algorithm

3 Result and Analysis

4 Next Results
Avoid lookup table
Faster runtime

5 Network Coding—wake up!
Conclusion

6 Conclusion

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 25 / 26

Conclusion

Conclusion

First sublinear-time algo with optimal measurements in forall model,
with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1

Time
√
kN, improveable (?) to poly(k, logN)

Lookup table of size Nk1/4, removeable (?)

Finale is open: Improve to 2-norm:

‖x − x̂‖2 ≤
ε√
k
‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 26 / 26

Conclusion

Conclusion

First sublinear-time algo with optimal measurements in forall model,
with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1

Time
√
kN, improveable (?) to poly(k, logN)

Lookup table of size Nk1/4, removeable (?)

Finale is open: Improve to 2-norm:

‖x − x̂‖2 ≤
ε√
k
‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 26 / 26

Conclusion

Conclusion

First sublinear-time algo with optimal measurements in forall model,
with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1

Time
√
kN, improveable (?) to poly(k, logN)

Lookup table of size Nk1/4, removeable (?)

Finale is open: Improve to 2-norm:

‖x − x̂‖2 ≤
ε√
k
‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 26 / 26

Conclusion

Conclusion

First sublinear-time algo with optimal measurements in forall model,
with

‖x − x̂‖1 ≤ (1 + ε)‖x − xk‖1

Time
√
kN, improveable (?) to poly(k, logN)

Lookup table of size Nk1/4, removeable (?)

Finale is open: Improve to 2-norm:

‖x − x̂‖2 ≤
ε√
k
‖x − xk‖1.

Martin J. Strauss (University of Michigan) Sublinear Time...For All July 28, 2011 26 / 26

	Preliminaries
	Problem we are addressing

	Algorithm
	Result and Analysis
	Next Results
	Avoid lookup table
	Faster runtime

	Network Coding—wake up!
	Conclusion

	Conclusion

