Sublinear Time, Measurement-Optimal, Sparse Recovery

For All

Martin J. Strauss
University of Michigan

Joint with Ely Porat, Bar Ilan

Outline

(1) Preliminaries

- Problem we are addressing
(2) Algorithm
(3) Result and Analysis
- Next Results
- Avoid lookup table
- Faster runtime
(5) Network Coding-wake up!
- Conclusion

6 Conclusion

Sparse recovery

- $\widehat{x}=R(\Phi x+\nu) \approx x$
- Approximate best k-term signal; length is N

Some criteria of algorithms

Speed

Some criteria of algorithms

Speed

Some criteria of algorithms

Number of measurements

Speed

Accuracy

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.
- ("sublinear time" algos lose to "superlinear" FFT every time.)

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.
- ("sublinear time" algos lose to "superlinear" FFT every time.)
- Accuracy-how much error, which norm, universality...our model:

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.
- ("sublinear time" algos lose to "superlinear" FFT every time.)
- Accuracy-how much error, which norm, universality...our model:
- Recover all signals in (smaller) ℓ_{1} ball, by one matrix.

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.
- ("sublinear time" algos lose to "superlinear" FFT every time.)
- Accuracy-how much error, which norm, universality...our model:
- Recover all signals in (smaller) ℓ_{1} ball, by one matrix.
- Norm of error

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.
- ("sublinear time" algos lose to "superlinear" FFT every time.)
- Accuracy-how much error, which norm, universality...our model:
- Recover all signals in (smaller) ℓ_{1} ball, by one matrix.
- Norm of error
- Want ℓ_{2} :

$$
\|x-\widehat{x}\|_{2} \leq \frac{\epsilon}{\sqrt{k}}\left\|x-x_{k}\right\|_{1} .
$$

Some criteria of algorithms

- Number of measurements: want $O(k \log N / k) \approx \log \binom{N}{k}$
- Recovery runtime (speed):
- want poly $(k \log N)$.
- Faster than previous measurement-optimal algorithms.
- ("sublinear time" algos lose to "superlinear" FFT every time.)
- Accuracy-how much error, which norm, universality...our model:
- Recover all signals in (smaller) ℓ_{1} ball, by one matrix.
- Norm of error
- Want ℓ_{2} :

$$
\|x-\widehat{x}\|_{2} \leq \frac{\epsilon}{\sqrt{k}}\left\|x-x_{k}\right\|_{1} .
$$

- Here get only ℓ_{1} (strictly worse):

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1} .
$$

Some results

Paper	No. meas.	time	norm
[GSTV07]	k polylog	$\operatorname{poly}(k \log N)$	2
[Donoho04] [CRT04]	$k \log (N / k)$	$\operatorname{poly}(N)$	2

Red is optimal.

Some results

Paper	No. meas.	time	norm
[GSTV07]	k polylog	$\operatorname{poly}(k \log N)$	2
[Donoho04] [CRT04]	$k \log (N / k)$	$\operatorname{poly}(N)$	2
[RI08]	$k \log (N / k)$	$N \log (N / k)$	1

Red is optimal.

Some results

Paper	No. meas.	time	norm
[GSTV07]	$k \operatorname{polylog}$	$\operatorname{poly}(k \log N)$	2
[Donoho04] [CRT04]	$k \log (N / k)$	$\operatorname{poly}(N)$	2
RI08]	$k \log (N / k)$	$N \log (N / k)$	1
Here/In progress	$k \log (N / k)$	$\operatorname{poly}(k \log N)$	1

Red is optimal.
Here is http://arxiv.org/abs/1012.1886v2

Some results

Paper	No. meas.	time	norm
[GSTV07]	$k \operatorname{polylog}$	$\operatorname{poly}(k \log N)$	2
[Donoho04] [CRT04]	$k \log (N / k)$	$\operatorname{poly}(N)$	2
RI08]	$k \log (N / k)$	$N \log (N / k)$	1
Here/In progress	$k \log (N / k)$	$\operatorname{poly}(k \log N)$	1

Red is optimal.
Here is http://arxiv.org/abs/1012.1886v2
Other models by: Xu-Hassibi, Caldebank-Howard-Jafarpour, Gilbert-Li-P-S, ...

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:

$$
\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
\text { noise } \\
\text { noise } \\
7 \\
\text { noise } \\
\text { noise }
\end{array}\right)
$$

Group testing 1-sparse signals

Group testing on 1-sparse signal. First half or second? Recover bit-by-bit:

$$
\left(\begin{array}{l}
7 \\
0 \\
7 \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\text { Reference } \\
\text { Small } \\
\text { BIG } \\
\text { Small }
\end{array}\right)=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
\text { noise } \\
\text { noise } \\
7 \\
\text { noise } \\
\text { noise }
\end{array}\right)
$$

Techniques for some sublinear algorithms

- Hash into k buckets (hope to isolate HH's with low noise)

$$
H=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Group testing on 1 -sparse signal.

$$
\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- Typically lose log factor in meas. Top row of H becomes:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Outline

(1) Preliminaries

- Problem we are addressing
(2) Algorithm
(3) Result and Analysis
(4) Next Results
- Avoid lookup table
- Faster runtime
(5) Network Coding—wake up!
- Conclusion
(6) Conclusion

Algorithm

- Hash into $B=\sqrt{k N}$ buckets;

Hash

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate;

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure
- Repeat $\log (N / k) / \log (B / k)=2$ times;

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure
- Repeat $\log (N / k) / \log (B / k)=2$ times; collect measurements

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure
- Repeat $\log (N / k) / \log (B / k)=2$ times; collect measurements
- Recursively solve, naively.

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure
- Repeat $\log (N / k) / \log (B / k)=2$ times; collect measurements
- Recursively solve, naively. Time \approx length $=B=\sqrt{k N}$

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure
- Repeat $\log (N / k) / \log (B / k)=2$ times; collect measurements
- Recursively solve, naively. Time \approx length $=B=\sqrt{k N}$
- Lift solution (from table).

Algorithm

- Hash into $B=\sqrt{k N}$ buckets; Aggregate; Measure
- Repeat $\log (N / k) / \log (B / k)=2$ times; collect measurements
- Recursively solve, naively. Time \approx length $=B=\sqrt{k N}$
- Lift solution (from table). Time \approx no. preimages $=k(N / B)=\sqrt{k N}$

Outline

(1) Preliminaries

- Problem we are addressing
(2) Algorithm
(3) Result and Analysis
(4) Next Results
- Avoid lookup table
- Faster runtime
(5) Network Coding—wake up!
- Conclusion
(6) Conclusion

Result

Theorem
Algorithm takes $\approx \sqrt{k N}$ time and uses $k \log (N / k)$ measurements.

Result

Theorem
Algorithm takes $\approx \sqrt{k N}$ time and uses $k \log (N / k)$ measurements.
Need to show:

- Number of measurements and runtime-done.
- Correctness of Hashing procedure
- Why $2=\log (N / k) / \log (B / k)$ repetitions?
- Why do we get $(\approx k, B)$-signal?
- Correctness of recursive solution-easy
- Correctness of lifting-easy by (lazy) design (use of table)

Correctness of Hashing

Lemma
Intermediate signal is indeed $\approx k$-sparse and length B.

Correctness of Hashing

Lemma
Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.

Correctness of Hashing

Lemma
Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.
- $\geq k / 2$ fail with prob $(k / B)^{k}=2^{-k \log (B / k)}$

Correctness of Hashing

Lemma
Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.
- $\geq k / 2$ fail with $\operatorname{prob}(k / B)^{k}=2^{-k \log (B / k)}$
- Heavy hitters land in set S of about k of B buckets. Consider t noise items of size $1 / t$:

Correctness of Hashing

Lemma
Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.
- $\geq k / 2$ fail with prob $(k / B)^{k}=2^{-k \log (B / k)}$
- Heavy hitters land in set S of about k of B buckets. Consider t noise items of size $1 / t$:
- Each noise item lands in S with prob k / B

Correctness of Hashing

Lemma

Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.
- $\geq k / 2$ fail with prob $(k / B)^{k}=2^{-k \log (B / k)}$
- Heavy hitters land in set S of about k of B buckets. Consider t noise items of size $1 / t$:
- Each noise item lands in S with prob k / B
- $\geq t / 2$ noise items land in S with prob $(k / B)^{t}=2^{-t \log (B / k)}$
(Otherwise, enough of S survives)

Correctness of Hashing

Lemma

Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.
- $\geq k / 2$ fail with prob $(k / B)^{k}=2^{-k \log (B / k)}$
- Heavy hitters land in set S of about k of B buckets. Consider t noise items of size $1 / t$:
- Each noise item lands in S with prob k / B
- $\geq t / 2$ noise items land in S with $\operatorname{prob}(k / B)^{t}=2^{-t \log (B / k)}$
(Otherwise, enough of S survives)
- Repeat $\log (N / k) / \log (B / k)$ times

Correctness of Hashing

Lemma

Intermediate signal is indeed $\approx k$-sparse and length B.

- Each heavy hitter is isolated except with prob k / B.
- $\geq k / 2$ fail with prob $(k / B)^{k}=2^{-k \log (B / k)}$
- Heavy hitters land in set S of about k of B buckets. Consider t noise items of size $1 / t$:
- Each noise item lands in S with prob k / B
- $\geq t / 2$ noise items land in S with $\operatorname{prob}(k / B)^{t}=2^{-t \log (B / k)}$
(Otherwise, enough of S survives)
- Repeat $\log (N / k) / \log (B / k)$ times
- Failure probs drop to $(k / N)^{k} \leq\binom{ N}{k}^{-1}$ and $(k / N)^{t} \leq\binom{ N}{t}^{-1}$
- Take union bound.

More generally...

- Cascade through any chosen number ℓ of levels.
- poly (ℓ) problems with parameters $\left(k, k(N / k)^{1 / \ell}\right)$
- Time around poly $(\ell) k(N / k)^{1 / \ell}$
- Number of measurements is around $\operatorname{poly}(\ell) k \log (N / k)$

Outline

(1) Preliminaries

- Problem we are addressing
(2) Algorithm
(3) Result and Analysis
(4) Next Results
- Avoid lookup table
- Faster runtime
(5) Network Coding-wake up!
- Conclusion
(6) Conclusion

What's next?

(Joint with Anna Gilbert, Yi Li, Ely Porat)

What's next?

(Joint with Anna Gilbert, Yi Li, Ely Porat)

- Avoid lookup table

What's next?

(Joint with Anna Gilbert, Yi Li, Ely Porat)

- Avoid lookup table
- Lower runtime from $\operatorname{poly}(\ell) k(N / k)^{1 / \ell}$ to $\operatorname{poly}(k, \log N)$

Avoid lookup table

- When we recover heavy hitter i,

Avoid lookup table

- When we recover heavy hitter i,
- ...can also get arbitrary $O(\log (B / k))$-bit message!

Avoid lookup table

- When we recover heavy hitter i,
- ...can also get arbitrary $O(\log (B / k))$-bit message!
- (Partially) codes pointer back to $i^{\prime} \in[N]$.

Avoid lookup table

- When we recover heavy hitter i,
- ...can also get arbitrary $O(\log (B / k))$-bit message!
- (Partially) codes pointer back to $i^{\prime} \in[N]$.
- No need to store back pointer: $[B] \rightarrow[N]$ explicitly in table.

Avoid lookup table

- When we recover heavy hitter i,
- ...can also get arbitrary $O(\log (B / k))$-bit message!
- (Partially) codes pointer back to $i^{\prime} \in[N]$.
- No need to store back pointer: $[B] \rightarrow[N]$ explicitly in table.
- Only need to use hash function forwards: $[N] \rightarrow[B]$.

Sparse recovery channel-The medium is the message

- Encoder and Decoder agree on Φ (independent of message)

Sparse recovery channel-The medium is the message

- Encoder and Decoder agree on Φ (independent of message)
- Message m of length B and alphabet size B / k

Sparse recovery channel-The medium is the message

- Encoder and Decoder agree on Φ (independent of message)
- Message m of length B and alphabet size B / k
- Encoder makes final measurement matrix Φ^{\prime} from Φ and m

Sparse recovery channel-The medium is the message

- Encoder and Decoder agree on Φ (independent of message)
- Message m of length B and alphabet size B / k
- Encoder makes final measurement matrix Φ^{\prime} from Φ and m
- Channel picks x and $\nu\left(\neq 0\right.$?) and produces $\Phi^{\prime} x+\nu$.

Sparse recovery channel-The medium is the message

- Encoder and Decoder agree on Φ (independent of message)
- Message m of length B and alphabet size B / k
- Encoder makes final measurement matrix Φ^{\prime} from Φ and m
- Channel picks x and $\nu\left(\neq 0\right.$?) and produces $\Phi^{\prime} x+\nu$.
- Decoder tries to recover m in x-weighted sense; need $\widehat{m}_{i} \approx m_{i}$ for many i such that $\left|x_{i}\right|$ is large. (Decoder doesn't know x.)

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

1-bit message

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Leads to

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

1-bit message

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Leads to

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

- With $k \log (B / k)$ measurements, $\log (B / k)$ lossy chances to code bits.

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

1-bit message

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Leads to

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

- With $k \log (B / k)$ measurements, $\log (B / k)$ lossy chances to code bits.
- With ECC, get $\log (B / k)(\approx \log N$?)-bit msg for each HH.

Coding one bit

(Reduced group testing.) Hash into k buckets. One bucket:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

1-bit message

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Leads to

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

- With $k \log (B / k)$ measurements, $\log (B / k)$ lossy chances to code bits.
- With ECC, get $\log (B / k)(\approx \log N$?)-bit msg for each HH.

Use message to lift solution, rather than explicit lookup table.

Three kinds of information

Algorithm:

- Hash into B buckets
- Repeat $r=\log (N / k) / \log (N / B)$ times
- Solve recursively

Need $\log N$ bits of backpointer hash ${ }^{-1}: \rightarrow[N]$.

Three kinds of information

Algorithm:

- Hash into B buckets
- Repeat $r=\log (N / k) / \log (N / B)$ times
- Solve recursively

Need $\log N$ bits of backpointer hash ${ }^{-1}: \rightarrow[N]$.
j 'th repetition, $j=1,2, \ldots, r$, gives tuple of

- $\log (B / k)$ codeable bits m_{i}
- j (side information)
- Index $i_{j} \in[B]$ of recursive heavy hitter in j 'th repetition $(\log B$ non-codeable bits)

Three kinds of information

Algorithm:

- Hash into B buckets
- Repeat $r=\log (N / k) / \log (N / B)$ times
- Solve recursively

Need $\log N$ bits of backpointer hash ${ }^{-1}: \rightarrow[N]$.
j 'th repetition, $j=1,2, \ldots, r$, gives tuple of

- $\log (B / k)$ codeable bits m_{i}
- j (side information)
- Index $i_{j} \in[B]$ of recursive heavy hitter in j 'th repetition $(\log B$ non-codeable bits)
Code payload and linking information into m_{i} and assemble.

Three kinds of information

Algorithm:

- Hash into B buckets
- Repeat $r=\log (N / k) / \log (N / B)$ times
- Solve recursively

Need $\log N$ bits of backpointer hash ${ }^{-1}: \rightarrow[N]$.
j 'th repetition, $j=1,2, \ldots, r$, gives tuple of

- $\log (B / k)$ codeable bits m_{i}
- j (side information)
- Index $i_{j} \in[B]$ of recursive heavy hitter in j 'th repetition $(\log B$ non-codeable bits)
Code payload and linking information into m_{i} and assemble. How?

Outline

(1) Preliminaries

- Problem we are addressing
(2) Algorithm
(3) Result and Analysis
(4) Next Results
- Avoid lookup table
- Faster runtime
(5) Network Coding-wake up!
- Conclusion
(6) Conclusion

Network coding

First, network (rateless) coding:

Network coding

First, network (rateless) coding:

- Message (movie) of length n

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)
- Flaky network-dropped connections (erasures) but no errors

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)
- Flaky network-dropped connections (erasures) but no errors
- Publisher breaks message into p packets, encodes, and broadcasts continually

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)
- Flaky network-dropped connections (erasures) but no errors
- Publisher breaks message into p packets, encodes, and broadcasts continually
- Subscriber needs any $O(p)$ packets to recover message.

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)
- Flaky network-dropped connections (erasures) but no errors
- Publisher breaks message into p packets, encodes, and broadcasts continually
- Subscriber needs any $O(p)$ packets to recover message.
- Punchline, e.g.,

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)
- Flaky network-dropped connections (erasures) but no errors
- Publisher breaks message into p packets, encodes, and broadcasts continually
- Subscriber needs any $O(p)$ packets to recover message.
- Punchline, e.g.,
- Send ever-new points on graph of degree-p polynomial.

Network coding

First, network (rateless) coding:

- Message (movie) of length n
- Download for later viewing (not streamed, not DVD by mail, ...)
- Flaky network-dropped connections (erasures) but no errors
- Publisher breaks message into p packets, encodes, and broadcasts continually
- Subscriber needs any $O(p)$ packets to recover message.
- Punchline, e.g.,
- Send ever-new points on graph of degree- p polynomial.
- Any $p+1$ points suffice.

Multiple-stream network coding problem

- Unordered set of k messages (movies), length n, transmitted simultaneously.

Multiple-stream network coding problem

- Unordered set of k messages (movies), length n, transmitted simultaneously.
Total $k n$ bits. Want to recover from $O(n k)$ total bits, avoiding log k header bits (which movie?) per packet.

Multiple-stream network coding problem

- Unordered set of k messages (movies), length n, transmitted simultaneously.
Total $k n$ bits. Want to recover from $O(n k)$ total bits, avoiding log k header bits (which movie?) per packet.

Get error correction for free! Why?

Multiple-stream network coding problem

- Unordered set of k messages (movies), length n, transmitted simultaneously.
Total $k n$ bits. Want to recover from $O(n k)$ total bits, avoiding log k header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

Multiple-stream network coding problem

- Unordered set of k messages (movies), length n, transmitted simultaneously.
Total $k n$ bits. Want to recover from $O(n k)$ total bits, avoiding log k header bits (which movie?) per packet.

Get error correction for free! Why?

Packets from one movie

can be regarded as noise in another

Upcoming results

Theorem
There's an algorithm that runs in time $k \log ^{O(1)} N$, uses $O(k \log N / k)$ measurements, and returns \widehat{x} with

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1} .
$$

(Joint with Anna Gilbert, Yi Li, Ely Porat)

Upcoming results

Theorem
There's an algorithm that runs in time $k \log ^{O(1)} N$, uses $O(k \log N / k)$ measurements, and returns \widehat{x} with

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1} .
$$

(Joint with Anna Gilbert, Yi Li, Ely Porat)
Can this be improved with better error-correcting codes?

Outline

(1) Preliminaries

- Problem we are addressing
(2) Algorithm
(3) Result and Analysis
- Next Results
- Avoid lookup table
- Faster runtime
(5) Network Coding-wake up!
- Conclusion
(6) Conclusion

Conclusion

- First sublinear-time algo with optimal measurements in forall model, with

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1}
$$

Conclusion

- First sublinear-time algo with optimal measurements in forall model, with

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1}
$$

- Time $\sqrt{k N}$, improveable (?) to poly $(k, \log N)$

Conclusion

- First sublinear-time algo with optimal measurements in forall model, with

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1}
$$

- Time $\sqrt{k N}$, improveable (?) to poly $(k, \log N)$
- Lookup table of size $N k^{1 / 4}$, removeable (?)

Conclusion

- First sublinear-time algo with optimal measurements in forall model, with

$$
\|x-\widehat{x}\|_{1} \leq(1+\epsilon)\left\|x-x_{k}\right\|_{1}
$$

- Time $\sqrt{k N}$, improveable (?) to poly $(k, \log N)$
- Lookup table of size $N k^{1 / 4}$, removeable (?)

Finale is open: Improve to 2-norm:

$$
\|x-\widehat{x}\|_{2} \leq \frac{\epsilon}{\sqrt{k}}\left\|x-x_{k}\right\|_{1}
$$

