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“‘Drosophila RNAIi screen identifies host genes important for influenza
virus replication,” Nature 2008. How do they confidently determine the ~100
out of 13K genes hijacked for virus replication from extremely noisy data?
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First question: Who are the players in the network?

“‘Drosophila RNAIi screen identifies host genes important for influenza
virus replication,” Nature 2008. How do they confidently determine the ~100
out of 13K genes hijacked for virus replication from extremely noisy data?

Sequential Experimental Design:

Stage 1: assay all 13K strains, twice; keep all with significant
fluorescence in one or both assays for 2nd stage (13K — 1K)

Stage 2: assay remaining 1K strains, 6-12 times; retain only
those with statistically significant fluorescence (1K — 100)

vastly more efficient that replicating all 13K experiments many times




ldealized Example

non-sequential design
(n cell strains, 3 samples each)




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably
separate signals from noise




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably
separate signals from noise

two-stage design
(adaptively allocate 3n samples)

¢




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably
separate signals from noise

two-stage design
(adaptively allocate 3n samples)




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably
separate signals from noise

two-stage design
(adaptively allocate 3n samples)




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably
separate signals from noise

two-stage design
(adaptively allocate 3n samples)




ldealized Example

non-sequential design
(n cell strains, 3 samples each)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably
separate signals from noise

two-stage design
(adaptively allocate 3n samples)

first stage has large false-positive rate, but low
false-negative. larger SNR in second stage
makes it easier to separate signals from noise.




ldealized Example

non-sequential design two-stage design
(n cell strains, 3 samples each) (adaptively allocate 3n samples)

measure each cell strain with equal
precision/SNR, then threshold to
control false-positive error

may be impossible to reliably first stage has large false-positive rate, but low
separate signals from noise false-negative. larger SNR in second stage
makes it easier to separate signals from noise.

Under a fixed sensing/experimental budget, does this two-stage design (or some
other sequential design) provide better error control than non-sequential design?




Cognitive Radio Spectrum Sensing

“‘primary” users have preference over “secondary” users




Cognitive Radio Spectrum Sensing

“‘primary” users have preference over “secondary” users

r.'v" N" 'I'l r.lv"‘ "‘Ill'l _1
VA | T s VIV | i & A I (707
.\""' N Iy

III || s | \ | ’ |r ql n'!l |, i ||
Y 1 [1] | ” RE ﬂ KR

most channels occupied by primary users, but they come and go in unpredictable
manner. Secondary users “sense” spectrum to find an unoccupied channel




Cognitive Radio Spectrum Sensing

“‘primary” users have preference over “secondary” users

r.iv"‘w" ' r.'v"‘;"ll."1
'.."_.'.I N ’ - |'-. |"‘ A r ‘ l g
l'.'" '| |I \ . v '[l AY) | | r , 1 A II o
.\""' Y I

||| || s | ) | } | r ‘1 I n,'l |’ . |I
| ‘ 1] T]i‘ o ” RER x KR

most channels occupied by primary users, but they come and go in unpredictable
manner. Secondary users “sense” spectrum to find an unoccupied channel

Goal: Find open channel(s) as quickly as possible. Two approaches:

1) listen to each channel for a fixed amount of time and make decision
2) listen to each channel for a data-adaptive amount of time to make decisions
as quickly as possible
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most channels occupied by primary users, but they come and go in unpredictable
manner. Secondary users “sense” spectrum to find an unoccupied channel

Goal: Find open channel(s) as quickly as possible. Two approaches:

1) listen to each channel for a fixed amount of time and make decision
2) listen to each channel for a data-adaptive amount of time to make decisions

as quickly as possible

adaptive spectrum sensing can be significantly more time-efficient than fixed sensing
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Sparse Recovery (image reconstruction, compressed sensing, inverse problems)

y = Ax + w, with A € R™*"™ € R™ (but sparse), w ~ N (0, )

Goal: recover x fromy

Is sequentially designing (rows of) A advantageous ?
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Single Experiment Model

Y, — Xy + Zq izl,...,n

sparsity: x; = 0 except on a small
subset S C {1,...,n} where z; = u >0

Suppose we want to locate just one signal component: ¢ = arg max; y;

Even if no signal is present, max; y; ~ +/2logn

It is ®mpossible to reliably detect signal components if © < /2logn
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An Alternative: Sequential Experimental Design

Instead of the usual non-adaptive observation model
Yi = T; + 2, iZl,...,n

suppose we are able to sequentially collect several independent
measurements of each component of x, according to

7 indexes the measurement steps
k denotes the total number of steps
iid

7vi.;= 0 controls the precision of each measurement

Total precision budget is constrained, but the choice
of v, ; can depend on past observations {y; ¢}¢<;.
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Experimental (Precision) Budget

sequential measurement model

—~1/2 .
Yij = i + V0 %y, t=1,...

The precision parameters {; ;} are required to satisfy

k n
S:S:’Yi,j < n

j=1i=1

For example, the usual non-adaptive, single measurement model corresponds
to taking k =1, and ;1 = 1,2 =1,...,n. This baseline can be compared with
adaptive procedures by allowing £ > 1 and variable {; ; } satisfying budget.

Precision parameters control the SNR per component.

SNR is increased /decreased by

— more/fewer repeated samples or

— longer /shorter observation times

allocate precision sequentially and adaptively
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Sequential Thresholding

define the sparsity level
Sequential Thresholding s:= |8

initialize: So = {1,...,n}, 7;; =2
for 9 =1,...,k

1) measure: y; ; ~N (z;,2) , i € 54 E|S; 4|
i
2) threshold: S; ={i:y; ; > 0} =1

total precision budget: E {ZZ j %‘,g}

end

1 <n—s )
| — — TS
output: S = {7 : y;x > 0} 2 =1 27
n—s+ks ~ n
(when n > s)

probability of error: P(Sk # S) PSS NS, A0 U{SNSL #0})
P(S°NS, #0) + P(SNSg #0)
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ldealized Example

threshold at zero and re-measure
only those components that survive

repeat several times

most of true signal components
survive several thresholding
steps, almost all of noise
components do not
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Probability of Error Bound

P(Sk # S) P(S°NS,#0) + P(SNS; # 0)
n—s ks 1
ok + > exp <_Z>
n—s 1 (_ (1* — 4log(k8)))

ok + §exp 0

Consider high-dimensional limit as n — oo and take k = log, n'™¢

— S 1 (u® — 4log(s(1 + €)logyn))
P(Sy #S8) < %—l— §eXp<—’u ] )
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Probability of Error Bound

P(S, £ S) P(S°NS,#0D) + P(SNSE# 0)
nz—kS

n—s 1 (_(2—410g(ks)))

T A

Consider high-dimensional limit as n — oo and take k = log, n'™¢

— S 1 (u® — 4log(s(1 + €)logyn))
P(Sk #S) < %+ §€XP<—M 1 )
0

Second term tends to zero if

1 > +/clog(slog,n) , for any ¢ > 4
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Gains of Sequential Design

Rui Castro Jarvis Haupt Matt Malloy
(Eindhoven) (Minnesota) (Madison)

non-sequential: p > /2logn  (necessary)

sequential thresholding: (sufficient)

1 > +/4(log s + loglog, n)

with a bit more work we can show

i > +/2(logs + loglog,logn) suffices

significant gains when s < n

greater sensitivity for same precision budget or lower
experimental requirements for equivalent sensitivity




Biology Example

13,071 single-gene
" knock-down cell strains

prob(error)

——nhon-sequential
——sequential

log s vs. logn

|

14

16
SNR (dB)

sequential thresholding is about twice as sensitive (for equal experimental budget)
or requires half the number experiments (for same sensitivity)
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Lower Bound
f90 . l g S

fgl , 1€ S assuIne f907 f91 and
sparsity level s are known

p(yz) A

—>y;

specify error rates (per-test):

false-positive probability: « e/(n—s)
false-negative probability: 3 €/s

expected number of errors: a(n—s) + 8s = 2¢

expected number samples (precision per-test): for a, 6 ~ 0

1
> Do_llogg —Do_llogf
€
> —1 1 —1
= Dy loga Di " log -

where Dy, Dy are KL divergences Dy := D( fo, || fo,) and D1 := D( fo, || fo,)

n—s




Lower Bound

expected total sampling/precision:

EIN] = (n—s)Ey M|+ sE{[M] 2 Dﬂlogf , when s < n
0 €




Lower Bound

expected total sampling/precision:

EIN] = (n—s)Ey M|+ sE{[M] 2 Dﬂlogf , when s < n
0 €

sampling /precision budget: E[N]<n = Dy > logs/e

minimum requirement for any testing scheme
with expected sample/precision budget m
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assuming sparsity level is khown




Lower Bound

expected total sampling/precision:

= (n—s)Eq|M]+ sE;{|M] = Dﬁlogf , when s < n
0 €

sampling /precision budget: E[N]<n = Dy > logs/e

minimum requirement for any testing scheme
with expected sample/precision budget m

essentially achievable using sequential probability ratio test for each component
assuming sparsity level is khown

Gaussian case: N(0,1) vs. N(u,1) = Dg = p?/2 and so prob(error) < e iff

1> /2logs/e

sequential thresholding: p > /2 (logs + loglog, logn)

and is adaptive to sparsity level
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Spectrum Sensing

goal: scan to find open channel(s) as quickly as possible

channel samples: y; ; ~CN(0,60), 6p>6,=1

F(m@-,HO) , ) g 8
F(mi, 1) y 1€ S

test statistic: t¢;(m;) = Z;n:"l yiil? ~ {
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goal: scan to find open channel(s) as quickly as possible

channel samples: y; ; ~ CN(0,0), 6y>0;=1

F(mi700)7 ZQS
F(mi, 1) y 1€ S

test statistic: t;(m;) = > 71 Yi |2~ {

curse: false-positive error tail is polynomial
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Spectrum Sensing Application

blessing: false-negative tail is exponential

curse: false-positive error tail is polynomial

scanning budget: m = average number of samples per channel

1/2m n1/2m

non-sequential: 6, > 2(m —1)(n — s) (necessary)

SPRT: 0, > % log s minimum.requirement for any testing
scheme with average sample budget m

sequential thresholding: 6, > %(logs—l—log log,n) (sufficient)

...and automatically adaptive to sparsity level
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Performance n=1000 channels, s=6 unoccupied

r.lv"if"l_."-’

——non-sequential '— Non-sequential
——sequential | —— Sequential Thresholding

10dB
“

10 15 ' v 50 100

SNR (dB) scan time (ms)

sequential thresholding is about 10 times more sensitive
(for equal scan time) or scans 3 times faster (with same reliability)




Spectrum Sensing in the Lab

Matt Malloy in the lab
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requirements for reliable sequential testing in high-dimensional sparse problems:

|.SNR ~ max(log(s) , logloglog(n))
2. total number of samples ~ 2n
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Conclusions

Sequential Experimental Designs for High-Dimensional Models

thresholds for recovery in high-dimensional limit:

non-sequential designs SNR ~ log(dimension) (or worse)

sequential designs SNR ~ log(sparsity level) (or better)
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