Localization from Incomplete Noisy Distance Measurements

Adel Javanmard and Andrea Montanari

Stanford University

July 27, 2011

A chemistry question

Which physical conformations are produced by given chemical bonds?
...more questions...

Manifold Learning

Sensor Net. Localization

General 'geometric inference' problem

Given partial/noisy information about distances.
Reconstruct the points positions.

Connection with matrix completion

> What happens to matrix completion if the probabilty of revealing entry i, j depends on the value of that entry?

Connection with matrix completion

What happens to matrix completion if the probabilty of revealing entry i, j depends on the value of that entry?

This talk

$$
\begin{aligned}
& \text { R.G.G. } G(n, r) \\
& x_{1}, \cdots, x_{n} \in[-0.5,0.5]^{d} \\
& r \geq \alpha(\log n / n)^{1 / d}
\end{aligned}
$$

This talk

$$
\begin{gathered}
\text { R.G.G. } G(n, r) \\
x_{1}, \cdots, x_{n} \in[-0.5,0.5]^{d} \\
r \geq \alpha(\log n / n)^{1 / d}
\end{gathered}
$$

adversarial noise
$\left|\tilde{d}_{i j}^{2}-d_{i j}^{2}\right| \leq \Delta$

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...)

Little quantitative theory, especially in presence of noise

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...)

Little quantitative theory, especially in presence of noise

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...) Little quantitative theory, especially in presence of noise

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...) Little quantitative theory, especially in presence of noise

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...) Little quantitative theory, especially in presence of noise

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...)

Approaches

- Triangulation
- Multidimensional scaling
- Divide and conquer (Singer 2008)
- SDP relaxations (Biswas, Ye 2004)
- Manifold learning (ISOMAP, LLE, HLLE, ...)

Little quantitative theory, especially in presence of noise

Outline

(1) SDP relaxation and robust reconstruction
(2) Lower bound
(3) Rigidity theory and upper bound
(4) Discussion

SDP relaxation and robust reconstruction

Preliminary notes

- Positions can be reconstructed up to rigid motions
- NP-hard [Saxe 1979]

Optimization formulation

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2}, \quad x_{i} \in \mathbb{R}^{d} \\
\text { subject to } & \left|\left\|x_{i}-x_{j}\right\|_{2}^{2}-\tilde{d}_{i j}^{2}\right| \leq \Delta
\end{aligned}
$$

Optimization formulation

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2}, \quad x_{i} \in \mathbb{R}^{d} \\
\text { subject to } & \left|\left\|x_{i}-x_{j}\right\|_{2}^{2}-\tilde{d}_{i j}^{2}\right| \leq \Delta
\end{aligned}
$$

Nonconvex

Optimization formulation

$$
\begin{array}{cl}
\operatorname{minimize} & \sum_{i=1}^{n} Q_{i i} \\
\text { subject to } & \left|Q_{i i}-2 Q_{i j}+Q_{j j}-\tilde{d}_{i j}^{2}\right| \leq \Delta \\
& Q_{i j}=\left\langle x_{i}, x_{j}\right\rangle
\end{array}
$$

Nonconvex

Optimization formulation (better notation)

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{Tr}(Q) \\
\text { subj.to } & \left|\left\langle M_{i j}, Q\right\rangle-\tilde{d}_{i j}^{2}\right| \leq \Delta \\
& Q_{i j}=\left\langle x_{i}, x_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
M_{i j} & =e_{i j} e_{i j}^{T} \\
e_{i j} & =(0, \ldots, 0, \underbrace{+1}_{i}, 0, \ldots, 0, \underbrace{-1}_{j}, 0, \ldots, 0)
\end{aligned}
$$

Semidefinite programing relaxation

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{Tr}(Q) \\
\text { subj.to } & \left|\left\langle M_{i j}, Q\right\rangle-\tilde{d}_{i j}^{2}\right| \leq \Delta \\
& Q_{i j}=\left\langle x_{i}, x_{j}\right\rangle \quad Q \succeq 0
\end{aligned}
$$

$$
\begin{aligned}
M_{i j} & =e_{i j} e_{i j}^{T}, \\
e_{i j} & =(0, \ldots, 0, \underbrace{+1}_{i}, 0, \ldots, 0, \underbrace{-1}_{j}, 0, \ldots, 0)
\end{aligned}
$$

Semidefinite programing relaxation

SDP-based Localization

Input : Distance measurements $\tilde{d}_{i j},(i, j) \in G$
Output : Low-dimensional coordinates $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$
1: Solve the following SDP problem:
minimize $\operatorname{Tr}(Q)$,
s.t. $\quad\left|\left\langle M_{i j}, Q\right\rangle-\tilde{d}_{i j}^{2}\right| \leq \Delta, \quad(i, j) \in G$, $Q \succeq 0$.

2: Eigendecomposition $Q=U \Sigma U^{T}$;
3: Top d e-vectors $X=U_{d} \Sigma_{d}^{1 / 2}$;

Robustness?

Robustness?

Theorem (Javanmard, Montanari '11)

Assume $r \geq 10 \sqrt{d}(\log n / n)^{1 / d}$. Then, w.h.p.,

$$
d(X, \hat{X}) \leq C_{1}\left(n r^{d}\right)^{5} \frac{\Delta}{r^{4}}
$$

Further, there exists a set of 'adversarial' measurements such that

$$
d(X, \hat{X}) \geq C_{2} \frac{\Delta}{r^{4}} .
$$

$$
d(X, \hat{X}) \approx \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\widehat{x}_{i}\right\|
$$

Lower bound

Proof: Lower bound

Proof: Lower bound

$$
\mathcal{T}:[-0.5,0.5]^{d} \rightarrow \mathbb{R}^{d+1}
$$

$\mathcal{T}\left(t_{1}, t_{2}, \cdots, t_{d}\right)=\left(R \sin \frac{t_{1}}{R}, t_{2}, \cdots, t_{d}, R\left(1-\cos \frac{t_{1}}{R}\right)\right), \quad R=\frac{r^{2}}{\sqrt{\Delta}}$

Rigidity theory and upper bound

Uniqueness \Leftrightarrow Global rigidity

Global rigidity

Assume noiseless measurements.
Is the reconstruction unique? (up to rigid motions)
Depends both on G and on $\left(x_{1}, \ldots, x_{n}\right)$

Generic lobal rigidity: Characterization

Theorem (Connelly 1995; Gortler, Healy, Thurston, 2007)
$\left(G,\left\{x_{i}\right\}\right)$ is generically globally rigid in \mathbb{R}^{d}
\Leftrightarrow
($G,\left\{x_{i}\right\}$) admits a stress matrix Ω, with $\operatorname{rank}(\Omega)=n-d-1$.

Stress matrix

... imagine putting springs on the edges ...

Equilibrium x_{1}, \ldots, x_{n} :

$$
\text { [force on } i]=\sum_{j \in \partial i} \omega_{i j}\left(x_{j}-x_{i}\right)=0
$$

Stress matrix

... imagine putting springs on the edges ...

Equilibrium x_{1}, \ldots, x_{n} :

$$
\text { [force on } i \text {] }=\sum_{j \in \partial i} \omega_{i j}\left(x_{j}-x_{i}\right)=0
$$

$$
\Omega_{i j}=\omega_{i j}, \Omega_{i i}=-\sum_{j \in \partial i} \omega_{i j}
$$

Infinitesimal rigidity

Consider a continuos motion preserving distances instantaneously

$$
\left(x_{i}-x_{j}\right)^{T}\left(\dot{x}_{i}-\dot{x_{j}}\right)=0, \forall(i, j) \in E
$$

Trivial motions
rotation translation
Definition
($G,\left\{x_{i}\right\}$) is infinitesimally rigid if rotations and translations are the only infinitesimal motions.

Infinitesimal rigidity

Consider a continuos motion preserving distances instantaneously

$$
\left(x_{i}-x_{j}\right)^{T}\left(\dot{x}_{i}-\dot{x_{j}}\right)=0, \forall(i, j) \in E
$$

Trivial motions

$$
\dot{x_{i}}=A x_{i}+b, \quad A=-A^{T} \in \mathbb{R}^{d \times d}
$$

Definition

($G,\left\{x_{i}\right\}$) is infinitesimally rigid if rotations and translations are the only infinitesimal motions.

Rigidity matrix

$$
\left(x_{i}-x_{j}\right)^{T}\left(\dot{x}_{i}-\dot{x}_{j}\right)=0, \forall(i, j) \in E
$$

Rigidity matrix: $\quad R_{G, X} \cdot\left[\begin{array}{c}\dot{x_{1}} \\ \vdots \\ \dot{x_{n}}\end{array}\right]=0$
$\left(G,\left\{x_{i}\right\}\right)$ is infinitesimally rigid if $\operatorname{rank}\left(R_{G, X}\right)=n d-\binom{d+1}{2}$.

Rigidity matrix

$$
\left(x_{i}-x_{j}\right)^{T}\left(\dot{x}_{i}-\dot{x}_{j}\right)=0, \forall(i, j) \in E
$$

Rigidity matrix: $\quad R_{G, X} \cdot\left[\begin{array}{c}\dot{x_{1}} \\ \vdots \\ \dot{x_{n}}\end{array}\right]=0$

$$
\operatorname{dim}\left(\operatorname{null}\left(R_{G, X}\right)\right) \geq \underbrace{\frac{d(d-1)}{2}}_{A}+\underbrace{d}_{b}=\binom{d+1}{2}
$$

Rigidity matrix

$$
\left(x_{i}-x_{j}\right)^{T}\left(\dot{x}_{i}-\dot{x}_{j}\right)=0, \forall(i, j) \in E
$$

Rigidity matrix: $\quad R_{G, X} \cdot\left[\begin{array}{c}\dot{x_{1}} \\ \vdots \\ \dot{x_{n}}\end{array}\right]=0$

$$
\operatorname{dim}\left(\operatorname{null}\left(R_{G, X}\right)\right) \geq \underbrace{\frac{d(d-1)}{2}}_{A}+\underbrace{d}_{b}=\binom{d+1}{2}
$$

$\left(G,\left\{x_{i}\right\}\right)$ is infinitesimally rigid if $\operatorname{rank}\left(R_{G, X}\right)=n d-\binom{d+1}{2}$.

(Idea of the) proof of the upper bound

- Noise is analogous to stretching/compressing the edges
- Global/infinitesimal rigidity: Rank of Stress/Rigidity matrix.
- Needed: Quantitative rigidity theory (Rank \Rightarrow bounds on singular values)

A mechanical analogy

Graph I

Graph II

A mechanical analogy

$$
\begin{gathered}
U(X)=\sum_{(i, j) \in E} \frac{1}{2}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}-\sum_{i} f_{i}^{T} x_{i} \\
\dot{X}=-\nabla_{X} U
\end{gathered}
$$

A mechanical analogy

$$
\begin{gathered}
U(X)=\sum_{(i, j) \in E} \frac{1}{2}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2}-\sum_{i} f_{i}^{T} x_{i} \\
\dot{X}=-\nabla_{X} U
\end{gathered}
$$

$x_{i}+\delta x_{i}$ equilibrium positions in the presence of force

$$
\left(\Omega \otimes I_{d}+R_{G, X} R_{G, X}^{T}\right) \cdot \delta x \approx f
$$

Steps of the proof

```
Solution of SDP }->
Gram matrix }->\mp@subsup{Q}{0}{(}(\mp@subsup{Q}{0}{}=X\mp@subsup{X}{}{T},X=[\mp@subsup{x}{1}{}|\mp@subsup{x}{2}{}|\cdots|\mp@subsup{x}{n}{}\mp@subsup{]}{}{T}
```


Steps of the proof

Solution of SDP $\rightarrow Q$

Gram matrix $\rightarrow Q_{0}\left(Q_{0}=X X^{T}, X=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{n}\right]^{T}\right)$

$$
\begin{aligned}
Q & =Q_{0}+S \\
& =Q_{0}+X Y^{T}+Y X^{T}+S^{\perp}
\end{aligned}
$$

Steps of the proof

Solution of SDP $\rightarrow Q$
Gram matrix $\quad \rightarrow Q_{0}\left(Q_{0}=X X^{T}, X=\left[x_{1}\left|x_{2}\right| \cdots \mid x_{n}\right]^{T}\right)$

$$
\begin{aligned}
Q & =Q_{0}+S \\
& =Q_{0}+\underbrace{X Y^{T}+Y X^{T}}_{\text {Controlled by rigidity matrix }}+\underbrace{S^{\perp}}_{\text {by stress matrix }}
\end{aligned}
$$

Steps of the proof

Lemma

For a stress matrix $\Omega \succeq 0$,

$$
\left\|S^{\perp}\right\|_{*} \leq \frac{\lambda_{\max }(\Omega)}{\lambda_{\min }\left(\left.\Omega\right|_{\langle u, x\rangle^{\perp}}\right)}|E| \Delta .
$$

Lemma

$$
\lambda_{\min }\left(\left.\Omega\right|_{\langle u, x\rangle^{\perp}}\right) \geq C_{1}\left(n r^{d}\right)^{-2} r^{4}, \quad \lambda_{\max }(\Omega) \leq C_{2}\left(n r^{d}\right)^{2} .
$$

Lemma

$$
\left\|X Y^{T}+Y X^{T}\right\|_{1} \leq C\left(n r^{d}\right)^{5} \frac{n^{2}}{r^{4}}
$$

Of independent interest

Lemma

$$
\left.\left.\Omega\right|_{\langle u, x\rangle^{\perp}} \succeq C_{1}\left(n r^{d}\right)^{-3} r^{2} \mathcal{L}\right|_{\langle u, x\rangle^{\perp}}
$$

(Manifold learning folklore: $\Omega \approx \mathcal{L}^{2}$)

Discussion

Discussion : Manifold learning

Data set

Proximity graph

$$
\tilde{d}_{i j}=\left\|x_{i}-x_{j}\right\|_{\mathbb{R}^{N}}, \quad d_{i j}=d_{\mathcal{M}}\left(x_{i}, x_{j}\right)
$$

$$
\Delta \propto \frac{r^{4}}{r_{0}^{2}}
$$

$$
\left(r_{0} \equiv \text { curvature radius }\right)
$$

Discussion : Manifold learning

Data set

Proximity graph

$$
\tilde{d}_{i j}=\left\|x_{i}-x_{j}\right\|_{\mathbb{R}^{N}}, \quad d_{i j}=d_{\mathcal{M}}\left(x_{i}, x_{j}\right)
$$

$$
\Delta \propto \frac{r^{4}}{r_{0}^{2}}
$$

Discussion : Manifold learning

Data set

Proximity graph

$$
\tilde{d}_{i j}=\left\|x_{i}-x_{j}\right\|_{\mathbb{R}^{N}}, \quad d_{i j}=d_{\mathcal{M}}\left(x_{i}, x_{j}\right)
$$

$$
\Delta \propto \frac{r^{4}}{r_{0}^{2}} \quad\left(r_{0} \equiv \text { curvature radius }\right)
$$

Manifold learning: Reconstruction error

$$
d(X, \hat{X}) \leq C \frac{\left(n r^{d}\right)^{5}}{r_{0}^{2}}
$$

Maximum Variance Unfolding

[cf. Weinberger and Saul, 2006]

Optimization formulation

$$
\begin{aligned}
\operatorname{maximize} & \sum_{1 \leq i, j \leq n}^{n}\left\|x_{i}-x_{j}\right\|^{2} \\
\text { subj.to } & \left|\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right| \leq \Delta \quad \forall(i, j) \in E \\
& \sum_{i=1}^{n} x_{i}=0
\end{aligned}
$$

Semidefinite programing relaxation

$$
\begin{aligned}
\operatorname{maximize} & \operatorname{Tr}(Q) \\
\text { subj.to } & \left|\left\langle M_{i j}, Q\right\rangle-d_{i j}^{2}\right| \leq \Delta \\
& u^{T} Q u=0 \\
& Q \succeq 0
\end{aligned}
$$

$$
\begin{aligned}
M_{i j} & =e_{i j} e_{i j}^{T}, \\
e_{i j} & =(0, \ldots, 0, \underbrace{+1}_{i}, 0, \ldots, 0, \underbrace{-1}_{j}, 0, \ldots, 0)
\end{aligned}
$$

Conclusion

- Numerous examples of geometric inference.
- Many open problems.

Conclusion

- Numerous examples of geometric inference.
- Many open problems.

Conclusion

- Numerous examples of geometric inference.
- Many open problems.

Thanks!

