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Information overload

As more information becomes
available, it becomes more
difficult to find and discover
what we need.

We need new tools to help us
organize, search, and
understand these vast
amounts of information.



Topic modeling
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Topic modeling provides methods for automatically organizing,
understanding, searching, and summarizing large electronic archives.
© Discover the hidden themes that pervade the collection.
® Annotate the documents according to those themes.
® Use annotations to organize, summarize, and search the texts.
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Model the evolution of topics over time
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Model connections between topics
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Browse and discover patterns in large data sets

Original article

Topic-based browser

Automatic Analysis, Theme
Generation, and Summarization
of Machine-Readable Texts

Related articles

Global Text Matching for Information Retrieval

G SN A Crnis BUCKLEY

oo vt s st s e it s cimenn

666

T fle:///Users blei/doc.html

Gerard Salton, James Allan, Chris Buckley,
Vast amounis. oftoxt matrial arerow avaliable i machin-road

B3 =

ossi
subjoct aroas in accordance with usor neods. In partcular, mef

reflect text content.

s of exts e carrently svalable el of retieval

o automatic processing. Because the aval- a5 well as informa
aies are large nd cover many  sened by set, of

e sbjec comatic aids st i ypically 3 word,
un..xn nterested in accessing  ssiociated wieh o

s e sy ks b

s m.n.u w0a

e the e
for content represe]

o for i texe e
text databases. T
procedures for deermining text themes, r
versing texts selctively, and extracting sum-
mary statements that reflct text conten.

Text fnaiysis and Retreval
rt System

t system is @ sophisticated text

tool, developed over the past 30

years, that i based on the vector space

The s

weight anigned to {

sy e
5T ween pains of ve|

STENE Skt Ths,

SCINCE + VO

, Theme Generation, and

ToPic PROB
data computer system information network 030
information library text index libraries 0.9
two three four different single 0.16
DOCUMENT SCORE Eresfeg
“Global Text Matching for Information Retrieval” (1991) 02570 L
“Automatic Text Analysis" (1970) 03110 TR 1
auging ey : L 03210
Categorization of Text" (1995)
“Developments in Automatic Text Retrieval” (1991) T sroRTG ov TTIT
“Simple and Rapid Method for the Coding of Punched Cards” < 0.3610 I o };:‘f:z‘;]u:“:”““‘ f‘g‘“:‘:“‘“‘”“f:
(192 e of December 50t T el nclined to add &
word in commendation of the method. 1 begua
“Data Processing by Optical Cofncidence” (1961) 0.42%0 v i ix or seven years ago
o hava 162 upon 1y shelv
“Pattern-Analyzing Memory” (1976) 04320 al are dovote to Experiment Station bullo
in e b bing e by St and
“The Storing of Pamphiets” (1899) (X9 it s
“A Punched-Card Technique for Computing Means, Standard 0,450

Deviations, and the Product-Moment Correlation Coefficient
and for Listing Scattergrams” (1946)

by
e ra o svere s bl




We need online inference
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O

Analyze the collection Update the model

e Existing algorithms process document collections in batch.
e This is inefficient for large collections.
e It cannot accommodate streaming collections.



We need online inference
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O

Sample one document Analyze it Update the model

¢ Allows us to analyze millions of documents
e Lets us develop topic models on streaming collections



This talk

© Introduction to topic modeling
® Online inference for topic models



Introduction to topic modeling



Latent Dirichlet allocation
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Simple intuition: Documents exhibit multiple topics.



Generative model for latent Dirichlet allocation (LDA)
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e Each topic is a distribution over words
e Each document is a mixture of corpus-wide topics
e Each word is drawn from one of those topics



The posterior distribution
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e In reality, we only observe the documents
e The other structure are hidden variables



The posterior distribution
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e QOur goal is to infer the hidden variables
¢ |.e., compute their distribution conditioned on the documents
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LDA as a graphical model
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e Encodes our assumptions about the data
e Helps us derive ways of computing with data

¢ |solates independence assumptions, which are separate from
other specific details of the model



Example inference

Seeking Life’s Bare (Genetic) Necessities

e Data: The OCR’ed collection of Science from 1990-2000

e 17K documents
e 11M words
e 20K unique terms (stop words and rare words removed)

e Model: 100-topic LDA model using variational inference.



Example inference
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Example inference
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Used in exploratory tools of document collections
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Summary of LDA
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e LDA can

 visualize the hidden thematic structure in large corpora
o generalize new data to fit into that structure

e Builds on Deerwester et al. (1990) and Hofmann (1999)
It is an example of a mixed membership model (Erosheva, 2004)
Relates to multinomial PCA (Jakulin and Buntine, 2002).

e Was independently invented for genetics (Pritchard et al., 2000)



Why develop these kinds of models?
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e Organizing and finding patterns in data has become important in
the sciences, humanties, industry, and culture.

e LDA can be embedded in more complicated models.

¢ Algorithmic improvements let us fit models to massive data.



Bigger Picture: Probabilistic modeling
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Discovered structure

e Research in modeling separates these basic activities
e Though linked, we can work on each piece separately




Online inference for topic models



We need online inference
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O

Analyze the collection Update the model

e Existing algorithms process document collections in batch.
e This is inefficient for large collections.
e It cannot accommodate streaming collections.



We need online inference
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Sample one document Analyze it Update the model

¢ Allows us to analyze millions of documents
e Lets us develop topic models on streaming collections



Computation with LDA
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e Our goal is to compute the posterior, the conditional distribution
of the hidden variables given the documents.

e We will build on variational inference.

o Posit a parameterized distribution g over hidden variables.
» Optimize to make q close (in KL) to the posterior.



Batch variational inference for LDA
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e The mean field distribution places a variational parameter on
each hidden variable.

e Optimize these with coordinate ascent, iteratively optimizing
each parameter while holding the others fixed.



Batch variational inference for LDA
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¢ In the “local step” we iteratively update the parameters for each
document, holding the topic parameters fixed.



Example inference (again
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Batch variational inference for LDA
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¢ In the “global step” we aggregate the parameters computed from
the local step and update the parameters for the topics.



Example topic inference
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Online inference for LDA
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© Randomly pick a document.

® Perform local variational inference with the current topics.

® Form “fake” topics, treating the sampled document as though it
were the only document in the collection.

@ Update the topics to be a weighted average of the fake topics
and current topics.



Analyzing 3.3M articles from Wikipedia
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Why does this work?

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MONRO
University of North Carolina

1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(z) = a, where a is a given constant. We give a method for making
successive experiments at levels 2, , 22 , - - - in such a way that z, will tend to 6 in
probability.

Why waste time with the real gradient, when a cheaper noisy
estimate of the gradient will do (Robbins and Monro, 1951)7?

Idea: Follow a noisy estimate of the gradient with a step-size.

By decreasing the step-size according to a certain schedule, we
guarantee convergence to a local optimum.

See Hoffman et al. (2010) and Sato (2001).



Summary
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¢ Hierarchical Bayesian models of text are a powerful way to
explore, summarize and search large archives of documents.

 Algorithmic advances in approximate posterior inference let us
apply complex models to large real-world data sets.



Online inference is promising

Assumptions

Inference algorithm

Discovered structure

o Stochastic variational methods are a general way to approximate
a posterior with massive/streaming data.

e Powerful algorithm for topic modeling, and can be adapted
hierarchical models for many types of data.

e Software and papers: www.cs.princeton.edu/~blei/




Open research directions

¢ Model diagnostics and model checking
Which model should | choose for which task? How does this
problem change in the face of streaming data?

¢ Interfaces and “downstream” applications of topic modeling
What can | do with an annotated corpus? What can | do with a
changing approximate posterior?

¢ Theoretical understanding of approximate inference
What do we know about variational inference from either the
statistical or learning perspective?



“We should seek out unfamiliar summaries of observational material,
and establish their useful properties... And still more novelty can
come from finding, and evading, still deeper lying constraints.”

(J. Tukey, The Future of Data Analysis, 1962)



On-line variational inference for LDA

1: Define p; £ (19 + )"

2: Initialize A randomly.

3: fort =0to o do

4:  Choose a random document w;

5. Initialize v4 = 1. (The constant 1 is arbitrary.)
6: repeat

7: Set ¢1.n x exp{Eq[log 6;] + Eq[log 5. w,]}

8: Setyi=a+3,0tn

9: until 1>, [change in v x| < ¢

10:  Compute Ak =n+ DY, Wyndrn
11: Set Ak = (1 —pt))\k+[)t>\k-
12: end for



