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• Low-rank model
– one low-dim subspace
– matrix completion, robust PCA

• Sparse model
– K sparse signals
– many subspaces
– equal dimensions

• Union of subspaces model
– few low-dim subspaces
– different dimensions
– 1-block sparse signals
– classification/clustering
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Subspace Clustering Problem
• Given a set of points lying in multiple subspaces, identify

– The number of subspaces and their dimensions
– A basis for each subspace
– The segmentation of the data points

• “Chicken-and-egg” problem
– Given segmentation, estimate subspaces
– Given subspaces, segment the data

• Challenges
– Noise, missing entries, outliers

• Applications
– Face/digit/speech recognition, motion/video segmentation



Prior Work on Subspace Clustering
• Iterative methods 

– K-planes (Bradley-Mangasarian ‘00) 

– K-subspaces (Kambhatla-Leen ’94,Tseng ‘00) 

• Probabilistic methods
– Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04, Chen ’11)

– Multi-Stage Learning (Kanatani ’04)

– Agglomerative Lossy Compression (Ma et al. ’07)

– Random Sampling and Consensus (Leonardis et al. ’02, Haralik-Harpaz ’07)

• Algebraic methods
– Generalized PCA: (Shizawa-Maze ’91, Vidal et al. ‘03, ‘04, ’05, Huang et al. ‘05)

– Factorization-based methods 
(Boult-Brown ‘91, Costeira-Kanade ‘98, Gear ’08, Kanatani et al. ’01)

• Spectral clustering-based methods (Zelnik-Manor ‘03, Yan-Pollefeys ’06, 
Govindu’05, Agarwal et al. ’05, Fan-Wu ’06, Chen-Lerman’08)



• Spectral clustering
– Represent data points as nodes in graph 
– Connect nodes    and    by edge with weight 
– Apply K-means to eigenvectors of the Laplacian

• How to define an affinity matrix C for subspaces?
– Want points in the same subspace to be close
– Want points in different subspace to be far
– Each node connects itself to nodes in the same 

subspace => get a perfect block-diagonal matrix

• Data in a union of subspaces are self-expressive 

yj =
N�
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– C is sparse
– C is low-rank



• Sparse Subspace Clustering (Elhamifar-Vidal CVPR’09, ICASSP’10)

– D is self-expressive with sparse coefficients C
– Is provably correct with perfect data
– Can handle data corrupted by noise, outliers and missing entries
– One of the best performing algorithms for video segmentation

• Low Rank Subspace Clustering (Favaro-Vidal-Ravichandran CVPR’11)

– D is obtained from clean self-expressive A with low-rank coefficients C
– Is provably correct with perfect data, can handle noise and outliers
– Important particular cases can be solved in closed form
– Leads to a novel polynomial thresholding of the singular values

min
A,C,E

�C�∗ + �E�q s.t. D = A+ E , A = AC
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min
C,E

�C�1 + �E�q s.t. D = DC + E , diag(C) = 0
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Sparse Subspace Clustering: intuition
• Idea: a point              from subspace     of dimension          

can be written as a linear combination of     points in the 
same subspace             subspace-sparse representation!

• Under what conditions on the subspaces does a sparse 
representation of a point come from points in the same 
subspace?

• Under what conditions on the subspaces can this sparse 
representation of a point be computed efficiently?
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Sparse Subspace Clustering: theory
• Independent subspaces

• Disjoint subspaces

• Independent implies disjoint, but disjoint does not imply 
independent
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Sparse Subspace Clustering: theory
• Theorem (Elhamifar & Vidal CVPR ’09) 

– For data points drawn from a union of independent linear subspaces, 
a subspace-sparse representation can be found by solving the 
following convex program

– For independent affine subspaces,

• Theorem (Elhamifar & Vidal ICASSP ’10)
– For data points drawn from a union of disjoint linear subspaces, a 

subspace-sparse representation can be found if the following condition 
on the subspace angles holds

max
rank(Ȳ i)=di

σdi(Ȳ i) >
�
di max

j �=i
cos(θij)

min �ci�1 s.t. yi = Dci, cii = 0

min �ci�1 s.t. yi = Dci, cii = 0, and 1�ci = 1



• Noise free data
– Nonconvex problem
– Convex problem

• Data corrupted by noise

• Data corrupted by outliers 

• Data corrupted by missing entries in
– Form                    and                             by eliminating rows of       and

     indexed by   , and solve the same optimization problems
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Sparse Subspace Clustering: corrupted data

min
C,E

�C�1 +
α

2
�E�2F s.t. D = DC + E and diag(C) = 0

min
C,E

�C�1 + �E�1 s.t. D = DC + E and diag(C) = 0

ỹ = Dc+ e
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min �C�0 s.t. D = DC and diag(C) = 0

min �C�1 s.t. D = DC and diag(C) = 0
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• Data lie in a union of low-dimensional subspaces

• There is a low-rank matrix of coefficients C

Low Rank Subspace Clustering (LRSC)
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• Noise free data 
– Nonconvex problem

– Convex problem

• Theorem 
– Both optimization have a closed form solution (Liu et al. ICML’10)

– If the subspaces are independent, the nonzero entries of C 
correspond to points in the same subspace (Vidal et al. IJCV’08)

• Data contaminated with noise or outliers

Low Rank Subspace Clustering (LRSC)

min
C

�C�∗ s.t. D = DC

min
C

rank(C) s.t. D = DC

D = UΣV T C = VrV
T
r

min
A,C,E

�C�∗ + �E�q s.t. A = AC and D = A+ E



Low Rank Subspace Clustering (LRSC)
• The problem is nonconvex because A and C are unknown

• Approach
– Case 1: Noise free and relaxed constraints
– Case 2: Noisy data and relaxed constraints
– Case 3: Noisy data and exact constraints
– Case 4: Outliers

• Key contributions
– Extend rank minimization results from one to multiple subspaces
– Important particular cases can be solved in closed form
– Our approach leads to a novel polynomial thresholding operator, which 

reduces the amount of shrinkage with respect to existing methods

min
A,C,E

�C�∗ + �E�q s.t. A = AC and D = A+ E



Case 1: noise free data & relaxed constraint

Lemma 1 Let A = UΛV T be the SVD of a given matrix A.

The optimal solution to min
C

�C�∗ +
τ

2
�A−AC�2F is

�C = V1(I −
1

τ
Λ−2
1 )V T

1 ,

where U = [U1 U2], Λ = diag(Λ1,Λ2) and V = [V1 V2] are
partitioned as I1 = {i : λi > 1/

√
τ} and I2 = {i : λi ≤ 1/

√
τ}.



Lemma 2 Let D = UΣV T be the SVD of the data matrix D. The
optimal solution to minA,C �C�∗ + τ

2�A−AC�2F + α
2 �D −A�2F is

�A = UΛV T and �C = V1(I −
1

τ
Λ−2
1 )V T

1 ,

where each entry of Λ = diag(λ1, . . . ,λn) is obtained from one
entry of Σ = diag(σ1, . . . ,σn) as the solution to

σ = ψ(λ) =

�
λ+ 1

ατ λ
−3 if λ > 1/

√
τ

λ+ τ
αλ if λ ≤ 1/

√
τ
,

that minimizes the cost, and the matrices U = [U1 U2],
Λ = diag(Λ1,Λ2) and V = [V1 V2] are partitioned according to
the sets I1 = {i : λi > 1/

√
τ} and I2 = {i : λi ≤ 1/

√
τ}.

�A = UPα,τ (Σ)V
T

Case 2: noisy data and relaxed constraints

Polynomial thresholding



Case 2: polynomial thresholding operator
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Fig. 1. Plot of ψ(λ) when 3τ ≤ α.
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Fig. 2. Plot of ψ(λ) when 3τ > α.

3.2.2 Uniqueness of the Closed Form Solution
When 3τ ≤ α, the solution for λ is unique. This is
because the second derivative of φ

∂2φ

∂λ2
=

�
α− 3

τ λ
−4 λ > 1/

√
τ

α+ τ λ ≤ 1/
√
τ

(59)

is strictly positive when 3τ ≤ α, hence φ(λ) is a strictly
convex function of λ.

When 3τ > α, as it can be seen in Figure 2, the solution
is unique when σ < σ1 � 4

3
4

�
3
ατ or σ > σ3 � α+τ

α
√
τ

.
However, when σ1 ≤ σ ≤ σ3 there could be up to three
different solutions. The first candidate solution can be

computed in closed form as

λ1(σ) =
α

α+ τ
σ. (60)

The remaining two candidate solutions λ2 and λ3 can be
computed as the two real roots of the polynomial

p(λ) = λ4 − σλ3 +
1

ατ
= 0, (61)

with λ2 being the smallest and λ3 being the largest root.1

Out of the three candidate solutions, λ1 and λ3 corre-
spond to a minimum and λ2 corresponds to a maximum.
This is because

λ1 ≤ 1/
√
τ , λ2 < 4

�
3

ατ
and λ3 > 4

�
3

ατ
, (62)

and so ∂2φ
∂λ2 is positive for λ1, negative for λ2 and positive

for λ3, respectively.
Out of the two possible minimizers, only one of

them will be a global minimum whenever φ(λ1(σ),σ) <
φ(λ3(σ),σ) or φ(λ1(σ),σ) > φ(λ3(σ),σ). In such cases the
solution for Λ, hence for A and C, will be unique. The
only case in which the solution is not unique is when D
has a singular value σ such that

φ(λ1(σ),σ) = φ(λ3(σ),σ)
ατ

2(α+ τ)
σ2 =

α

2
(σ − λ3(σ))

2 + 1− 1

2τ
λ3(σ)

−2.
(63)

In summary, we have shown the following result.

Theorem 2: Let D = UΣV T be the SVD of the data
matrix D. The optimal solutions to

min
A,C

�C�∗ +
τ

2
�A−AC�2F +

α

2
�D −A�2F (64)

are of the form

A = UΛV T and C = V1(I −
1

τ
Λ−2
1 )V T

1 , (65)

where each entry of Λ = diag(λ1, . . . ,λn) is obtained
from each entry of Σ = diag(σ1, . . . ,σn) as the solutions
to

σ = ψ(λ) =

�
λ+ 1

ατ λ
−3 if λ > 1/

√
τ

λ+ τ
αλ if λ ≤ 1/

√
τ
, (66)

that minimizes φ(λ), and the matrices U = [U1 U2], Λ =
diag(Λ1,Λ2) and V = [V1 V2] are partitioned according
to the sets I1 = {i : λi > 1/

√
τ} and I2 = {i : λi ≤ 1/

√
τ}.

The solution for each λ, hence for A and C, is unique,
except when D has a σ that (63) holds.

1. The other two roots of p are complex.
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Case 4: outliers
• We consider the nonconvex optimization problem

• We use the Augmented Lagrangian Method (ALM)

• We obtain the iterative polynomial thresholding algorithm

min
A,C,E

�C�∗ + γ�E�1 s.t. A = AC and D = A+ E

min
A,C,E

�C�∗ +
α

2
�D −A− E�2F+ < Y,D −A− E > +γ�E�1

Polynomial thresholding

Ak+1 = UPαk,τ (Σ)V
T

(U, S, V ) = svd(D − Ek + α−1
k Yk)

Ak+1 = UPαk,τ (S)V
T

Ek+1 = Sγα−1
k
(D −Ak+1 + α−1

k Yk)

Yk+1 = Yk + αk(D −Ak+1 − Ek+1) Ak+1 = US 1
αk

(Σ)V T

Shrinkage thresholding
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Segmentation of Dynamic Scenes
• Motion segmentation problem

– Input: multiple images of a scene with multiple rigid-body motions
– Output: number of motions, motion model parameters, segmentation

• Motion of a rigid-body lives 
in 4D linear subspace 
(Boult and Brown ’91, 
Tomasi and Kanade ’92)
– P = #points
– F = #frames

Vidal et al., ECCV02, IJCV06; Vidal, Ma and Sastry CVPR03, PAMI05; Vidal and Sastry CVPR03; Vidal and Ma ECCV04, 
JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. CVPR07; Goh and Vidal CVPR07; Vidal and 
Hartley, PAMI08; Vidal, Tron and Hartley IJCV08; Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09



GPCA LLMC LSA RANSAC MSL SCC ALC SSC LRR LCSR
All 10.34 4.97 4.94 9.76 5.03 2.33 3.37 1.24 3.16 3.28

Results on the Hopkins 155 database
• 2 motions, 120 sequences, 266 points, 30 frames

• 3 motions, 35 sequences, 398 points, 29 frames

• All

GPCA LLMC LSA RANSAC MSL SCC ALC SSC-B SSC-N

Checkerboard 6.09 3.96 2.57 6.52 4.46 1.30 1.55 0.83 1.12
Traffic 1.41 3.53 5.43 2.55 2.23 1.07 1.59 0.23 0.02
Articulated 2.88 6.48 4.10 7.25 7.23 3.68 10.70 1.63 0.62
All 4.59 4.08 3.45 5.56 4.14 1.46 2.40 0.75 0.82

GPCA LLMC LSA RANSAC MSL SCC ALC SSC-B SSC-N

Checkerboard 31.95 8.48 5.80 25.78 10.38 5.68 5.20 4.49 2.97
Traffic 19.83 6.04 25.07 12.83 1.80 2.35 7.75 0.61 0.58
Articulated 16.85 9.38 7.25 21.38 2.71 10.94 21.08 1.60 1.42
All 28.66 8.04 9.73 22.94 8.23 5.31 6.69 3.55 2.45



Results with missing entries & outliers
• Misclassifications rates on 12 motion sequences with missing 

data

• Misclassifications rates on 12 motion sequences with 
corrupted data

Method PF+ ALC5 PF+ALCsp �1+ALC5 �1+ALCsp SSC-N
Average 1.89% 10.81% 3.81% 1.28% 0.13%
Median 0.39% 7.85% 0.17% 1.07% 0.00%

Method �1 +ALC5 �1 +ALCsp SSC LRSC

Average 4.15% 3.02% 1.05% 1.22%



Temporal Video Segmentation by SSC
• Model each video segment as a low-dimensional subspace
• Segment the video into multiple segments

• Advantages
– SSC easily detects sharp transitions in the video
– SSC can handle camera motion and scene variations
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Conclusions
• Many problems in image processing and computer vision can 

be posed as multi-subspace clustering problems
– Spatial and temporal video segmentation
– Face clustering under varying illumination
– Dynamic texture segmentation

• These problems can be solved using
– Sparse Subspace Clustering (SSC): algorithm based on sparse 

representation theory and spectral clustering 
– Low Rank Subspace Clustering (LRSC): algorithm based on rank 

minimization and spectral clustering

• Future work
– Extending SSC to nonlinear manifolds
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