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Union of Subspaces Model

 Low-rank model
— one low-dim subspace

e Sparse model
— K sparse signals

— many subspaces K)
— equal dimensions K

— few low-dim subspaces
— different dimensions

— 1-block sparse signals
— classification/clustering

— matrix completion, robust PCA

* Union of subspaces model
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Subspace Clustering Problem

* Given a set of points lying in multiple subspaces, identify

— The number of subspaces and their dimensions
— A basis for each subspace
— The segmentation of the data points

« “Chicken-and-egg” problem

— Given segmentation, estimate subspaces
— Given subspaces, segment the data

« Challenges

— Noise, missing entries, outliers F

» Applications
— Face/digit/speech recognition, motion/video segmentation




Prior Work on Subspace Clustering
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face clustering
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Sparse and Low Rank Subspace Clustering

* Spectral clustering
— Represent data points as nodes in graph G
— Connect nodes 7 and J by edge with weight ¢;;
— Apply K-means to eigenvectors of the Laplacian

— Want points in the same subspace to be close
— Want points in different subspace to be far

— Each node connects itself to nodes in the same
subspace => get a perfect block-diagonal matrix

N

y, = cijy;, = y; =Dec; = D=DC
=1

 How to define an affinity matrix C for subspaces?

— Cis sparse
— Cis low-rank

« Data in a union of subspaces are self-expressive




Sparse and Low Rank Subspace Clustering

« Sparse Subspace Clustering (emnamifar-vidal cvPrR09, ICASSP'10)
%1%1 ICllL+ ||Elly st. D=DC+E, diag(C) =0

— D is self-expressive with sparse coefficients C

— |s provably correct with perfect data

— Can handle data corrupted by noise, outliers and missing entries
— One of the best performing algorithms for video segmentation

 Low Rank SUbSpaCG Clustering (Favaro-Vidal-Ravichandran CVPR11)

min ||C|l. + |E|l, st. D=A+E, A= AC
ACE

— D is obtained from clean self-expressive A with low-rank coefficients C
— |s provably correct with perfect data, can handle noise and outliers

— Important particular cases can be solved in closed form

— Leads to a novel polynomial thresholding of the singular values
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Sparse Subspace Clustering: intuition

* |dea: apointy € RM from subspace S of dimension d < M
can be written as a linear combination of d points in the
same subspace —p subspace-sparse representation!

S
L N
VRN

* Under what conditions on the subspaces does a sparse
representation of a point come from points in the same
subspace?

* Under what conditions on the subspaces can this sparse
representation of a point be computed efficiently?
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Sparse Subspace Clustering: theory

* Independent subspaces
1=1 1=1

* Disjoint subspaces

S;NS; = {0}

* Independent implies disjoint, but disjoint does not imply
independent
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Sparse Subspace Clustering: theory

* Theorem (Elhamifar & Vidal CVPR °09)

— For data points drawn from a union of independent linear subspaces,
a subspace-sparse representation can be found by solving the
following convex program

min ||¢;||1 s.t. y, = De;, ¢ =0

— For independent affine subspaces,
min ||¢;||1 s.t. y, = De¢;, c¢i; =0, and 1'e, =1

« Theorem (Elhamifar & Vidal ICASSP ’10)

— For data points drawn from a union of disjoint linear subspaces, a
subspace-sparse representation can be found if the following condition
on the subspace angles holds

max  04,(Y;) > \/d; maxcos(6;;)
rank(Yq;):dz- ]#7’




Sparse Subspace Clustering: corrupted data

* Noise free data . .
— Nonconvex problem |Cllo s.t. D= DC and diag(C) =0

— Convex problem  min ||C]|; s.t. D= DC and diag(C) =0

« Data corrupted by noise y = Dc+ e

Iélln HCH1+—HEHF st. D=DC+ FE and diag(C)

« Data corrupted by outliers y = Dc+ e = D I [Z]

Iélln |C|l1 + || F||lx st. D= DC+ FE and diag(C') =

 Data corrupted by missing entriesinl C {1,..., M}

— Form ¢ € RM~Hl gnd D € RM-IIDXN 1y eliminating rows of ¥ and
D indexed by I, and solve the same optimization problems vy
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Low Rank Subspace Clustering (LRSC)

D

D = [Dlv'” 7D’n,}

D = DC

0
0

0

0
V, VT

T

« Data lie in a union of low-dimensional subspaces

r _
e LS

rank(D;) =d; < M

D’i p— U@ZZ‘/;T ‘/’L E RNXdi ‘/;T‘/Z — Idi

 There is a low-rank matrix of coefficients C
_V]_ VlT

rank

(C) < Zn:d,-
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Low Rank Subspace Clustering (LRSC)

* Noise free data
— Nonconvex problem m(/in rank(C) s.t. D= DC

— Convex problem mci*n |Cl|« st. D= DC

 Theorem
— Both optimization have a closed form solution (Liu et al. ICML'10)

D=uxvt c=wv. vl

— If the subspaces are independent, the nonzero entries of C
correspond to points in the same subspace (vidal et al. IJCV'08)

 Data contaminated with noise or outliers

min ||C|l« + ||F|l; st. A=AC and D=A+FE
A,CE




Low Rank Subspace Clustering (LRSC)

« The problem is nonconvex because A and C are unknown

min ||C||. +||E|l, st. A=AC and D= A+E
ACE
* Approach
— Case 1: Noise free and relaxed constraints
— Case 2: Noisy data and relaxed constraints
— Case 3: Noisy data and exact constraints
— Case 4: Outliers

« Key contributions
— Extend rank minimization results from one to multiple subspaces
— Important particular cases can be solved in closed form

— Our approach leads to a novel polynomial thresholding operator, which
reduces the amount of shrinkage with respect to existing methods




Case 1: noise free data & relaxed constraint

Lemma 1 Let A= UAV?T be the SVD of a given matriz A.
The optimal solution to mcin |C|« + %HA — AC||% is

~ 1
C =Vill - ATV,

where U = Uy Us|, A = diag(A1,A2) and V = [V1 V3] are
partitioned as Iy = {i: \; > 1//7} and Io = {i: \; < 1/4/7}.
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Case 2: noisy data and relaxed constraints

Lemma 2 Let D = UXV?' be the SVD of the data matriz D. The
optimal solution to miny ¢ ||C||. + Z||A — AC||% + $||D — A||7 is

AN

R 1
A=UAVT and C=WVi(I — =ATH)VT,
T

where each entry of A Polynomial thresholding  ,ptained from one
entry of ¥ = diag(o, A=UP, (2 WL nto

B A AT A>T
0¢(A){A+g>\ ifA<1/y7’

that minimizes the cost, and the matrices U = [Uy Us],
A = diag(A1,A2) and V = [V; V5] are partitioned according to
the sets Iy ={i: A\ > 1/\/7} and Io = {i: \; < 1/4/7T}.
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Case 2: polynomial thresholding operator

A+ A
)\1 )\2 )\3
A - | | A
1 L 4/3
VT VT s
Fig. 1. Plot of v() when 37 < a. Fig. 2. Plot of ¢»(\) when 37 > a.
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Case 4: outliers

 We consider the nonconvex optimization problem

min [|C|l. | E|; st. A=AC and D= A+ E
AC.E

* \We use the Augmented Lagrangian Method (ALM)

: v 2
min 1C]]« + ; ID—-A—-E|5+<Y,D—-A—FE>++|E|:

* We obtain the iterative polynomial thresholding algorithm
(U, S, V) =svd(D — Ej, + a; ' V%) Polynomial thresholding
%
Apr1 =UPq, ,(D)VT

App1=UPq, - (S)V!
1
E1 = Syalzl(D - Akhk\k)\k Shrinkage thresholding

Yit1 =Y+ ax(D — Apy1 — Exyq) Ak = US& (vt
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Segmentation of Dynamic Scenes

* Motion segmentation problem
— Input: multiple images of a scene with multiple rigid-body motions
— Output: number of motions, motion model parameters, segmentation

e e *e e
T C R
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« Motion of a rigid-body lives

iIn 4D linear subspace
(Boult and Brown "91,
Tomasi and Kanade '92)

— P =#points
— F =#frames

11" T1p
|ZF1 " TFp
DEX P

|
2F x4
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Results on the Hopkins 155 database

* 2 motions, 120 sequences, 266 points, 30 frames

GPCA |LLMC|LSA |RANSAC|MSL|Scc| ALC |SSC-B|SSC-N
Checkerboard| 6.09 | 3.96 [2.57] 6.52 (4.46|1.30| 1.55 | 0.83 | 1.12
Traffic 1.41 | 3.53 [5.43| 2.55 [2.23]/1.07| 1.59 | 0.23 | 0.02
Articulated 2.88 | 6.48 [4.10 7.25 7.2313.68[10.70| 1.63 | 0.62
All 459 | 4.08 |3.45| 5.56 [4.14|1.46] 2.40 | 0.75 | 0.82
« 3 motions, 35 sequences, 398 points, 29 frames
GPCA|LLMC| LSA |RANSAC| MSL | SCC | ALC |SSC-B|SSC-N

Checkerboard| 31.95 | 848 | 5.80 | 25.78 [10.38| 5.68 | 5.20 | 4.49 | 2.97
Traffic 19.83] 6.04 [25.07| 12.83 | 1.80]2.35|7.75| 0.61 | 0.58
Articulated | 16.85| 9.38 | 7.25 | 21.38 | 2.71 [10.94(21.08| 1.60 | 1.42
All 28.66| 8.04 | 9.73 | 2294 | 823|5.31]6.69| 3.55 | 2.45
* Al Gpea | LLMC | 1SA | RANSAC | MSL | SCC | ALC | SSC | LRR | LCSR

All | 1034 | 497 [ 494 | 976 | 5.03 | 233 | 3.37 | 1.24 | 3.16 | 3.28




Results with missing entries & outliers

» Misclassifications rates on 12 motion sequences with missing

data
Method | PF1 ALC; | PF1ALC,, | /' +ALC; | /' +ALC,, | SSC-N
Average 1.89% 10.81% 3.81% 1.28% 0.13%
Median 0.39% 7.85% 0.17% 1.07% 0.00%

corrupted data

» Misclassifications rates on 12 motion sequences with

Method | ¢! + ALC5

¢+ + ALCq,

SSC

LRSC

Average

4.15% 3.02%

1.05%

1.22%
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Temporal Video Segmentation by SSC

 Model each video segment as a low-dimensional subspace
« Segment the video into multiple segments
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« Advantages
— SSC easily detects sharp transitions in the video
— SSC can handle camera motion and scene variations




Temporal Video Segmentation by SSC

 Model each video segment as a low-dimensional subspace
« Segment the video into multiple segments
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* Advantages
— SSC easily detects sharp transitions in the video
— SSC can handle camera motion and scene variations




Conclusions

 Many problems in image processing and computer vision can
be posed as multi-subspace clustering problems
— Spatial and temporal video segmentation
— Face clustering under varying illumination
— Dynamic texture segmentation

* These problems can be solved using

— Sparse Subspace Clustering (SSC): algorithm based on sparse
representation theory and spectral clustering

— Low Rank Subspace Clustering (LRSC): algorithm based on rank
minimization and spectral clustering

* Future work
— Extending SSC to nonlinear manifolds




Acknowledgements

« Collaborators
— Paolo Favaro, HWU
— Richard Hartley, ANU
— Yi Ma, UIUC & Microsoft Asia
— Shankar Rao, UIUC

« Students
— Ehsan Elhamifar
— Avinash Ravichandran
— Roberto Tron

Grants

Sloan Research Fellowship
ONR Young Investigator Award
ONR N00014-09-10084
ONR N00014-05-10836
NSF CAREER 0447739
NSF 0941463

NSF 0931805

NSF 0941362

NSF 0809101

NSF 0509101

ARL Robotics-CTA

JHU APL-934652

NIH RO1 HL082729

JHU APL-934652




