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Sampling correlated signals

M

Goal: acquire an ensemble of M signals

Bandlimited to W/2

“Correlated” → M signals are ≈ linear combinations of R signals
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“Correlated” → M signals are ≈ linear combinations of R signals



Sensor arrays



Framework

“Wired” local arrays that may or may not share a (multiplexed) ADC

Sparsity has nothing to do with it (but makes a guest appearance...)

Correlation structure is unknown (low-rank recovery problem)

Interested in systems with clear “implementation potential”



Components

analog 
VMM

modulator
x(t) p(t)x(t)

code p

LTI filterx(t) x(t) � h(t)
h

ADC
rate ϕ

x(t) {x(tk)}k

X(t) AX(t)
A

M × N

Analog vector-matrix multiplier spreads energy across channels

Modulators spread energy across frequency

Filters spread energy in one channel across time

We will use both uniform and non-uniform ADCs



Known correlation structure → whiten then sample
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Suppose the “mixing matrix” A is known and has SVD

A =




U





 Σ




 VT




then an efficient sampling structure is to “whiten” with UT, then
sample



Known correlation structure → whiten then sample

analog VMM ADC
rate W

ADC
rate W

M × R

UT

X(t) = Y

Requires R ADCs and a total of RW samples

Recover samples of original using X = UY
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W

Bandlimited ⇒ this is just a low-rank recovery problem

Sampling each channel separately takes MW total samples,
we want strategies that take ∼ RW total samples



Low-rank matrix recovery

Given p linear samples of a matrix,

y = A(X0), y ∈ Rp, X0 ∈ RM×W

we solve
min
X
‖X‖∗ subject to A(X) = y

where ‖X‖∗ is the nuclear norm: the sum of the singular values of X.

An “optimal” sampler A would (stably) recover X0 from y when

#samples & R ·max(M,W )

& RW (in our case)



Architecture 1: One non-uniform ADC per channel

nus-ADC

nus-ADC

nus-ADC

nus-ADC

avg rate θ

avg rate θ

avg rate θ

avg rate θ

M individual nonuniform-ADCs with average rate θ

Same as choosing Mθ random samples from M ×W matrix



Matrix completion

Results of Candes, Recht, Tao, Keshavan, Montenari, Oh, Plan, ... ⇒
Given a small number of entries in a low-rank matrix,
we can “fill in” the missing entries

Recht ’09: Suppose M ×W matrix X = UΣVT is rank R with

µ = max

(
M

R
max

i
‖UTei‖22,

W

R
max

i
‖VTei‖22,

MW

R
‖UVT‖2∞

)

then we can recover X whp from randomly chosen samples when

#samples ≥ Const · µ ·RW log2(W )

using nuclear norm minimization
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Architecture 1: One non-uniform ADC per channel

nus-ADC

nus-ADC

nus-ADC

nus-ADC

avg rate θ

avg rate θ

avg rate θ

avg rate θ

Direct application of these results: we can recover “incoherent”
ensembles when

total samples = Mθ ≥ Const. ·RW · log2(W )

so we can take θ ∼ R
MW instead of W .

Incoherent ⇒
signal energy is spread out evenly across time and channels



Architecture 1: One non-uniform ADC per channel

nus-ADC

nus-ADC

nus-ADC

nus-ADC

avg rate θ

avg rate θ

avg rate θ

avg rate θ

Drawbacks:

Incoherence assumptions (not universal)

Requires M ADCs (time-multiplexing would be delicate...)



Spreading the signals out

X = UΣVT X̃ = ŨΣṼT

analog VMM

random ⊥

h
LTI filter

h
LTI filter

h
LTI filter

h
LTI filter

h
LTI filter

h
LTI filter

A
M × M

Take A M ×M and orthogonal,
H = circ(h[n]) orthogonal:

H = FHΛF, Λ = diag({λi}), |λi| = 1

then

X = UΣVT ⇒ X̃ = ŨΣṼH, Ũ = AU, Ṽ = HV



Architecture 2: Pre-mix + prefilter + non-uniform ADCs

...

analog VMM

random ⊥
...

nus-ADC

nus-ADC

nus-ADC

nus-ADC

avg rate θ

avg rate θ

avg rate θ

avg rate θ

h
LTI filter

h
LTI filter

h
LTI filter

h
LTI filter

...
...

M × M

X

X̃

YA

We can recover the ensemble X̃ when

total samples & RW log4(W )

From X̃, we recover X using

X = ATX̃H

Universal, but still using an ADC for every channel...



Multiplexing onto one channel

We can always combine M channels into 1 by multiplexing in either
time or frequency

Frequency multiplexer:

modulator
cos(Wt)

modulator
cos(2Wt)

+ ADC
rate 3W

Replace M ADCs running at rate W with 1 ADC at rate MW



Architecture 3: modulated multiplexing

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

...
code pM

y

If the signals are spread out uniformly in time, then the ADC and
modulators can run at rate

ϕ & RW log3/2(MW )

This requires a (milder) “incoherence across time” assumption



Architecture 4: prefilter + modulated multiplexing

...

LTI filter

LTI filter

LTI filter

LTI filter

...

h1

h2

h3

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

hM
code pM

X y

Prefiltering spreads signals out over time (low-bandwidth filters)

Modulate and sum diversifies and then combines the channels

We use one standard ADC operating at rate ϕ (modulation rate is the
same as the ADC sample rate)

How big does ϕ need to be to recover X?



Architecture 4: prefilter + modulated multiplexing

...

LTI filter

LTI filter

LTI filter

LTI filter

...

h1

h2

h3

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

hM
code pM

X y

Matrix formulation

y =
[
H1 H2 H3 · · · HM

]
P vec(X)

(ϕ× ϕM random matrix)(samples of X at rate ϕ)

We have structured random linear measurements of a rank R matrix...



Compressive multiplexing theory

Recht et al ’07:
Recovery is possible given the matrix-RIP:

(1− δ)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖2F , ∀X : rank(X) ≤ 2R,



Compressive multiplexing theory

Recht et al ’07 Candes and Plan ’09
The mRIP can follow from a certain concentration bound.

If for any fixed M ×W matrix X and some 0 < t < 1 we have

P
{∣∣ ‖A(X)‖22 − ‖X‖2F

∣∣ > t‖X‖2F
}
≤ Ce

− p
µ ,

then δ < .307 for
p & µRW



Compressive multiplexing theory

Krahmer and Ward ’10:
Modulating columns of a sparse-RIP matrix yields concentration.

Suppose Φ satisfies

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ K-sparse x.

Set Φ′ = ΦP. Then there is a t < 1 s.t. for any fixed x

P
{∣∣ ‖Φ′x‖22 − ‖x‖22

∣∣ > t‖x‖22
}
≤ Ce−K/c



Compressive multiplexing theory

R ’09:
Concatenated random Toeplitz matrices obey a sparse-RIP.

Take
Φ =

[
H1 H2 · · · HM

]

then with high probability

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ K-sparse x

when
ϕ & K · log4(ϕM)



Architecture 4: prefilter + modulated multiplexing

...

LTI filter

LTI filter

LTI filter

LTI filter

...

h1

h2

h3

modulator

modulator

modulator

modulator

+

...

ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

hM
code pM

X y

We can stably recover a rank-R ensemble X when the modulators
and ADC operate at rate

ϕ & RW log4(MW )

This architecture is universal in that it works for any low-rank
correlation structure



Numerical experiments

A few data points form a rough idea of how this works in practice:

M ×W R sample threshold factor above RW

A2 300× 1000 5 18400 3.68
300× 1000 7 20800 2.97

A3 400× 1000 2 7600 3.8
400× 1000 4 10680 2.67
400× 1000 7 14000 2

A4 100× 1000 4 6600 1.65
100× 1000 7 10000 1.43
300× 1000 5 13000 2.6
300× 1000 7 14500 2.07

A2 is non-uniform sampling (matrix samples)
A3 is modulated multiplexing
A4 is prefilter+modulated multiplexing



Summary

We saw several compressive sampling architectures for acquiring
ensembles of correlated signals where the total number of samples we
take scales like

(bandwidth)× (rank)

(to within log factors)

...
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random ⊥
...
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h
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h
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X

X̃
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LTI filter
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h1
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ADC

code p1
rate ϕ

code p2

code p3

rate ϕ

rate ϕ

rate ϕ

rate ϕ

hM
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