The convex geometry of inverse problems

Benjamin Recht
Department of Computer Sciences
University of Wisconsin-Madison

Joint work with Venkat Chandrasekaran Pablo Parrilo Alan Willsky

Linear Inverse Problems

Find me a solution of

$$y = \Phi x$$

- Φ m x n, m<n
- Of the infinite collection of solutions, which one should we pick?
- Leverage structure:

Sparsity Rank Smoothness Symmetry

 How do we design algorithms to solve underdetermined systems problems with priors?

Sparsity

• 1-sparse vectors of Euclidean norm 1

 Convex hull is the unit ball of the l₁ norm

$$\{x : ||x||_1 \le 1\}$$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

Compressed Sensing: Candes, Romberg, Tao, Donoho, Tanner, Etc...

Rank

— rank 1
$$x^2 + z^2 + 2y^2 = 1$$

Convex hull:

$$\{X : \|X\|_* \le 1\}$$

$$||X||_* = \sum_i \sigma_i(X)$$

- 2x2 matrices
- plotted in 3d

$$\left\| \left[\begin{array}{cc} x & y \\ y & z \end{array} \right] \right\|_{*} \le 1$$

$$||X||_* = \sum_i \sigma_i(X)$$

Nuclear Norm Heuristic

R, Fazel, and Parillo 2007 Rank Minimization/Matrix Completion

Integer Programming

Integer solutions:
 all components of x
 are ±1

 Convex hull is the unit ball of the l₁ norm

$$\{x : \|x\|_{\infty} \le 1\}$$

$$||x||_{\infty} = \max_{i} |x_i|$$

Donoho and Tanner 2008 Mangasarian and Recht. 2009.

Parsimonious Models

- Search for best linear combination of fewest atoms
- "rank" = fewest atoms needed to describe the model

$$||x||_{\mathcal{A}} \equiv \inf_{(w,\alpha)} \sum_{k=1}^{r} |w_k|$$

Union of Subspaces

- X has structured sparsity: linear combination of elements from a set of subspaces {U_g}.
- Atomic set: unit norm vectors living in one of the Ug

$$||x||_{\mathcal{G}} = \inf \left\{ \sum_{g \in G} ||w_g|| : x = \sum_{g \in G} w_g, w_g \in U_g \right\}$$

Proposed by Jacob, Obozinski and Vert (2009).

Permutation Matrices

- X a sum of a few permutation matrices
- Examples: Multiobject Tracking (Huang et al),
 Ranked elections (Jagabathula, Shah)
- Convex hull of the permutation matrices: Birkhoff Polytope of doubly stochastic matrices
- Permutahedra: convex hull of permutations of a fixed vector.

$$[1,2,3,4] \xrightarrow{(3,1,2,4)} \xrightarrow{(4,1,3,3)} \xrightarrow{(4,2,1,3)} \xrightarrow{(4,2,1,3)} \xrightarrow{(4,2,1,3)} \xrightarrow{(4,2,3,1)} \xrightarrow{(4,3,1,2)} \xrightarrow{(4,3,2,1)} \xrightarrow{(4,3,2,2)} \xrightarrow{(4,3$$

- Moments: convex hull of of [1,t,t²,t³,t⁴,...],
 t∈T, some basic set.
- System Identification, Image Processing,
 Numerical Integration, Statistical Inference
- Solve with semidefinite programming
- Cut-matrices: sums of rank-one sign matrices.
- Collaborative Filtering, Clustering in Genetic Networks, Combinatorial Approximation Algorithms
- Approximate with semidefinite programming
- Low-rank Tensors: sums of rank-one tensors
- Computer Vision, Image Processing, Hyperspectral Imaging, Neuroscience
- Approximate with alternating leastsquares

Atomic Norms

- Given a basic set of *atoms*, \mathcal{A} , define the function $||x||_{\mathcal{A}} = \inf\{t > 0 \ : \ x \in t\mathrm{conv}(\mathcal{A})\}$
- When ${\cal A}$ is centrosymmetric, we get a norm

$$||x||_{\mathcal{A}} = \inf\{\sum_{a \in \mathcal{A}} |c_a| : x = \sum_{a \in \mathcal{A}} c_a a\}$$

IDEA: minimize
$$||z||_{\mathcal{A}}$$
 subject to $\Phi z = y$

- When does this work?
- How do we solve the optimization problem?

Tangent Cones

 Set of directions that decrease the norm from x form a cone:

$$\mathcal{T}_{\mathcal{A}}(x) = \{d : \|x + \alpha d\|_{\mathcal{A}} \le \|x\|_{\mathcal{A}} \text{ for some } \alpha > 0\}$$

• x is the unique minimizer if the intersection of this cone with the null space of Φ equals $\{0\}$

Gaussian Widths

- When does a random subspace, U, intersect a convex cone C at the origin?
- Gordon 88: with high probability if $\operatorname{codim}(U) \geq w(C)^2$
- Where $w(C)=\mathbb{E}\left[\max_{x\in C\cap\mathbb{S}^{n-1}}\langle x,g
 angle
 ight]$ is the Gaussian width.

$$g \sim \mathcal{N}(0, I_n)$$

• **Corollary:** For inverse problems: if Φ is a random Gaussian matrix with m rows, need $m \geq w(\mathcal{T}_{\mathcal{A}}(x))^2$ for recovery of x.

Robust Recovery

• Suppose we observe $y = \Phi x + w$ $\|w\|_2 \le \delta$

minimize
$$||z||_{\mathcal{A}}$$

subject to $||\Phi z - y|| \le \delta$

• If \hat{x} is an optimal solution, then $\|x-\hat{x}\| \leq \frac{2\delta}{\epsilon}$ provided that

Calculating Widths

$$m \ge n/2$$

$$m \ge 2s \left(\log \left(\frac{n-s}{s} \right) + 1 \right)$$

 Block sparse, M groups (possibly overlapping), maximum group size B, k active groups

$$m \ge 2k \left(\log \left(M - k\right) + B\right) + k$$

• Low-rank matrices: n_1 x n_2 , $(n_1 < n_2)$, rank r $m \geq 3r(n_1 + n_2 - r)$

General Cones

• **Theorem:** Let C be a nonempty cone with polar cone C^* . Suppose C^* subtends normalized solid angle μ . Then

 $w(C) \le 3\sqrt{\log\left(\frac{4}{\mu}\right)}$

- Corollary: For a vertex-transitive (i.e., "symmetric") polytope with p vertices, O(log p) Gaussian measurements are sufficient to recover a vertex via convex optimization.
- For n x n permutation matrix: $m = O(n \log n)$
- For $n \times n$ cut matrix: m = O(n)

Algorithms

minimize_z
$$\|\Phi z - y\|_2^2 + \mu \|z\|_{\mathcal{A}}$$

Naturally amenable to projected gradient algorithm:

$$z_{k+1} = \Pi_{\eta\mu}(z_k - \eta \Phi^* r_k)$$

"shrinkage"

$$\Pi_{\tau}(z) = \arg\min_{u} \frac{1}{2} ||z - u||^2 + \tau ||u||_{\mathcal{A}}$$

• Relaxations: $\mathcal{A}_1 \subset \mathcal{A}_2 \implies ||x||_{\mathcal{A}_2} \leq ||x||_{\mathcal{A}_1}$

NB! tangent cone gets wider

 Hierarchy of relaxations based on θ-Bodies yield progressively tighter bounds on the atomic norm

Atomic Norm Decompositions

- Propose a natural convex heuristic for enforcing prior information in inverse problems
- Bounds for the linear case: heuristic succeeds for most sufficiently large sets of measurements
- Stability without restricted isometries
- Standard program for computing these bounds: distance to normal cones
- Algorithms and approximation schemes for computationally difficult priors

Extensions...

- Width Calculations for more general structures
- Recovery bounds for structured measurement matrices (application specific)
- Incorporating stochastic noise models
- Understanding of the loss due to convex relaxation and norm approximation
- Scaling generalized shrinkage algorithms to massive data sets

JELLYFISH

with Christopher Ré

Example: minimize
$$\sum_{(u,v)\in E} (X_{uv} - M_{uv})^2 + \mu \|\mathbf{X}\|_*$$

• Idea: approximate $\mathbf{X} \approx \mathbf{L}\mathbf{R}^T$

minimize_(**L**,**R**)
$$\sum_{(u,v)\in E} \{ (\mathbf{L}_u \mathbf{R}_v^T - Z_{uv})^2 + \mu_u ||\mathbf{L}_u||_F^2 + \mu_v ||\mathbf{R}_v||_F^2 \}$$

Step 1: Pick (u,v) and compute residual:

$$e = (\mathbf{L}_u \mathbf{R}_v^T - Z_{uv})$$

Step 2: Take a gradient step:

$$\begin{bmatrix} \mathbf{L}_u \\ \mathbf{R}_v \end{bmatrix} \leftarrow \begin{bmatrix} (1 - \gamma \mu_u) \mathbf{L}_u - \gamma e \mathbf{R}_v \\ (1 - \gamma \mu_v) \mathbf{R}_v - \gamma e \mathbf{L}_u \end{bmatrix}$$

JELLYFISH

Observation: With replacement sample=poor locality **Idea**: Bias sample to improve locality.

$$\begin{bmatrix} L_{1} \\ L_{2} \\ L_{3} \end{bmatrix} = \begin{bmatrix} L_{1}R_{1} & [L_{1}R_{2}] & L_{1}R_{3} \\ L_{2}R_{1} & L_{2}R_{2} & [L_{2}R_{3}] \\ [L_{3}R_{1}] & L_{3}R_{2} & L_{3}R_{3} \end{bmatrix}$$

Algorithm: Shuffle the data.

- 1. Process $\{L_1R_1, L_2R_2, L_3R_3\}$ in parallel
- 2. Process $\{L_1R_2, L_2R_3, L_3R_1\}$ in parallel
- 3. Process $\{L_1R_3, L_2R_1, L_3R_2\}$ in parallel

Big win: No locks! (model access)

Shuffle all the rows and columns

Shuffle all the rows and columns

- Shuffle all the rows and columns
- Apply block partitioning

- Shuffle all the rows and columns
- Apply block partitioning
- Train on each block independently

- Shuffle all the rows and columns
- Apply block partitioning
- Train on each block independently

- Shuffle all the rows and columns
- Apply block partitioning
- Train on each block independently
- Repeat...

- Shuffle all the rows and columns
- Apply block partitioning
- Train on each block independently
- Repeat...

- Shuffle all the rows and columns
- Apply block partitioning
- Train on each block independently
- Repeat...

- Shuffle all the rows and columns
- Apply block partitioning
- Train on each block independently
- Repeat...
- Solves Netflix prize in under 1 minute on a 40 core machine
- Over 100x faster than standard solvers