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Linear Inverse Problems

e Find me a solution of
e d mxn, m<n

 Of the infinite collection of solutions, which one
should we pick?

e Leverage structure:

Sparsity Rank Smoothness Symmetry

« How do we design algorithms to solve
underdetermined systems problems with priors?



Sparsity

e 1-sparse vectors of
Euclidean norm 1

e Convex hull is the
unit ball of the I; norm

szl < 13




minimize ||x||
subject to Px =y

Compressed Sensing: Candes, Romberg, Tao,
Donoho, Tanner, Etc...



e 2X2 matrices )
e plotted in 3d

— rankd
X% + 2% + 2y2 =1 -0.4.

Convex hull:

| X || = Zai(X)
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Integer Programming

e Integer solutions:
all components of x

are :|:1 (_111) (111)
e Convex hull is the

unit ball of the I; norm

{z : ||Z]leo <1} (-1,-1) (1,-1)

2]l = max |z



minimize ||z oo
subject to Px =y

)%

ll
<<

Donoho and Tanner 2008
Mangasarian and Recht. 20009.



Parsimonious Models
. —Z2—rank

L = E W A
N kzw Y

model weights atoms

e Search for best linear combination of fewest atoms
e "rank” = fewest atoms needed to describe the model
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X has structured sparsity: linear combination of
elements from a set of subspaces {Ug}.

Atomic set: unit norm vectors living in one of the Ug

xginf{ng : :E:ng, ngUg}

geC geqG

Proposed by Jacob, Obozinski and Vert (2009).



Permutation Matrices

X a sum of a few permutation matrices

Examples: Multiobject Tracking (Huang et al),
Ranked elections (Jagabathula, Shah)

Convex hull of the permutation matrices: Birkhoff
Polytope of doubly stochastic matrices

Permutahedra: convex hull of permutations of a
fixed vector. wan

3,1,2 -ll (42,1,3)

B 1u
(41,3,2)
|134| |$31|

2 31-1!

[ 1 / 2 / 3 / 4 ] O, " )

1,2 BM* - B%%I

.\ ﬂ3 4 |$1h
AN 3,2,41) \
h B; 1)
l“; 3) @2 34,1./

1,2 %h

2,43,1)

|£13|



Moments: convex hull of of [1,t,t%,t3,t4,...],
teT, some basic set.

System Identification, Image Processing,
Numerical Integration, Statistical Inference

Solve with semidefinite programming

Cut-matrices: sums of rank-one sign matrices.

Collaborative Filtering, Clustering in Genetic
Networks, Combinatorial Approximation
Algorithms

Approximate with semidefinite
programming

Low-rank Tensors: sums of rank-one tensors

Computer Vision, Image Processing,
Hyperspectral Imaging, Neuroscience

Approximate with alternating least-
squares




Atomic Norms

Given a basic set of atoms, A, define the function
|z||4 =inf{t >0 : x € tconv(A)}

When A is centrosymmetric, we get a norm

|zla=inf{) |ca| : 2= coa}

minimize  ||z||4

IDEA: subject to Pz =y

When does this work?

How do we solve the optimization problem?



Tangent Cones

e Set of directions that decrease the norm from x
form a cone:
Ta(x) ={d : ||z + ad||a < ||x||4 for some o > 0}

minimize  ||z||4
subject to Pz =1y

{z : llzlla < llzlla}

« X is the unigue minimizer if the intersection of this
cone with the null space of ® equals {0}



Gaussian Widths

When does a random subspace, U, intersect a

convex cone C at the origin?

Gordon 88: with high probability if
codim(U) > w(C)?

Where w(C') =E max  (z, )
Gaussian width. xeCNsSn—1
g~ N(0, 1)

Corollary: For inverse problems: if ® is a random
Gaussian matrix with m rows, need m > w(74(x))

for recovery of x.

is the

2



Robust Recovery

+ Suppose we observe Yy = Pz 4+ w |wllo <6

minimize z|| 4
subject to ||[Pz —y| <6

20

- If T is an optimal solution, then ||z — Z|| < —

provided that S
: _ cow(Ta(x))’

N = (1 —€)?

[Pz —y| <6

{z : ||z]|la < |z||la}



Calculating Widths

Hypercube: m > n/2

Sparse Vectors, n vector, sparsity s<0.25n
n—sSs
m223<10g< >+1>
S

Block sparse, M groups (possibly overlapping),
maximum group size B, k active groups

m > 2k (log (M — k) + B) + k

Low-rank matrices: ni1 X nz, (n1<n2), rank r
m > 3r(ny +no — 1)




General Cones

Theorem: Let C be a nonempty cone with polar
cone C*, Suppose C* subtends normalized solid

angle 4. Then
4

Corollary: For a vertex-transitive (i.e.,
“symmetric”) polytope with p vertices, O(log p)
Gaussian measurements are sufficient to recover a
vertex via convex optimization.

For n X n permutation matrix: m = O(n log n)

For n x n cut matrix: m = O(n)



Algorithms

minimize, ||®z — yl|5 + ul/z]|4

« Naturally amenable to projected gradient algorithm:
fk+1 = Hnu(zk — NP )

‘shrinkase” 1, (2) — argnin 312 — ul® + ulLa
u

+ Relaxations: 41 C Ay = ||z||4, < ||x]|4,

NB! tangent cone
gets wider

 Hierarchy of relaxations based on 6-Bodies yield
progressively tighter bounds on the atomic norm



Atomic Norm Decompositions

Propose a natural convex heuristic for enforcing
prior information in inverse problems

Bounds for the linear case: heuristic succeeds for
most sufficiently large sets of measurements

Stability without restricted isometries

Standard program for computing these bounds:
distance to normal cones

Algorithms and approximation schemes for
computationally difficult priors



Extensions...

Width Calculations for more general structures

Recovery bounds for structured measurement
matrices (application specific)

Incorporating stochastic noise models

Understanding of the loss due to convex relaxation
and norm approximation

Scaling generalized shrinkage algorithms to massive
data sets



JELLYFISH

e SGD for Matrix Factorizations. )
with Christopher Ré

Example: minimize Z(UW)GE(XW — Myy)? + pl| X«

« Idea: approximate X ~ LR’

minimize(L,R) Z {(LuRZ _ Zuv)2 + :LLuHLuH%’ -+ /’L’UHR’UH%’}
(u,v)EE

e Step 1: Pick (u,v) and compute residual:

e = (L,R) — Z,,)
« Step 2: Take a gradient step:

L, (1 = Ypu)Ly — 7eRy
R, (I —yp)Ry —yeLy,




JELLYFISH

Observation: With replacement sample=poor locality
Idea: Bias sample to improve locality.

LR, LR, LyR,

Ly L1R; LR, 1 L4R;
::2 [Rl R, R3] = |L2R: LR, R3]
3

Algorithm: Shuffle the data.

1.
2.
3.

Process {L4Ry, LRy, L3R5} in paralle Big win: No locks!
Process {L,R,, L,R;, LsR;} in paralle (model access)
Process {L;R;, L,R;, L3R, } in paralle
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Example Optimization

 Shuffle all the rows and
columns

* Apply block partitioning

* Train on each block
independently

* Repeat...
* Solves Netflix prize in

under 1 minute on a 40
core machine

* Over 100x faster than
standard solvers






