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Linear Inverse Problems
• Find me a solution of

• Φ m x n, m<n

• Of the infinite collection of solutions, which one 
should we pick?

• Leverage structure:

• How do we design algorithms to solve 
underdetermined systems problems with priors?

y = Φx

Sparsity Rank Smoothness Symmetry



• 1-sparse vectors of 
Euclidean norm 1

• Convex hull is the 
 unit ball of the l1 norm
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minimize �x�1

subject to Φx = y
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Φx=y

Compressed Sensing: Candes, Romberg, Tao, 
Donoho, Tanner, Etc...



• 2x2 matrices
• plotted in 3d

  rank 1
  x2 + z2 + 2y2 = 1

Convex hull:

Rank

�X�∗ =
�

i

σi(X)



• 2x2 matrices
• plotted in 3d

Nuclear Norm Heuristic

Fazel 2002. 
R, Fazel, and Parillo 2007

Rank Minimization/Matrix Completion
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• Integer solutions:
 all components of x 

are ±1

• Convex hull is the 
 unit ball of the l1 norm
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Integer Programming



minimize �x�∞
subject to Φx = y

x1

x2

Φx=y

Donoho and Tanner 2008
Mangasarian and Recht. 2009.



• Search for best linear combination of fewest atoms
• “rank” = fewest atoms needed to describe the model

Parsimonious Models

atomsmodel weights

rank



Hierarchical dictionary for image patches
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Union of Subspaces

• X has structured sparsity: linear combination of 
elements from a set of subspaces {Ug}.

• Atomic set: unit norm vectors living in one of the Ug

• Proposed by Jacob, Obozinski and Vert (2009).
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Permutation Matrices
• X a sum of a few permutation matrices
• Examples: Multiobject Tracking (Huang et al), 

Ranked elections (Jagabathula, Shah)

• Convex hull of the permutation matrices: Birkhoff 
Polytope of doubly stochastic matrices

• Permutahedra:  convex hull of permutations of a 
fixed vector.

[1,2,3,4]



• Moments: convex hull of  of [1,t,t2,t3,t4,...],   
t∈T, some basic set.

• System Identification, Image Processing, 
Numerical Integration, Statistical Inference

• Solve with semidefinite programming

• Cut-matrices: sums of rank-one sign matrices.

• Collaborative Filtering, Clustering in Genetic 
Networks, Combinatorial Approximation 
Algorithms

• Approximate with semidefinite 
programming

• Low-rank Tensors: sums of rank-one tensors

• Computer Vision, Image Processing, 
Hyperspectral Imaging, Neuroscience

• Approximate with alternating least-
squares



Atomic Norms
• Given a basic set of atoms,     , define the function

• When      is centrosymmetric, we get a norm

• When does this work?  
• How do we solve the optimization problem?

�x�A = inf{
�

a∈A
|ca| : x =

�

a∈A
caa}

�x�A = inf{t > 0 : x ∈ tconv(A)}

A

minimize �z�A
subject to Φz = yIDEA:

A



• Set of directions that decrease the norm from x 
form a cone:

• x is the unique minimizer if the intersection of this 
cone with the null space of Φ	
  equals {0}

Tangent Cones

y = Φz x
minimize �z�A
subject to Φz = y

{z : �z�A ≤ �x�A}
TA(x)

TA(x) = {d : �x + αd�A ≤ �x�A for some α > 0}



Gaussian Widths
• When does a random subspace, U, intersect a 

convex cone C at the origin?

• Gordon 88: with high probability if

• Where                                               is the 
Gaussian width.

• Corollary: For inverse problems: if Φ is a random 
Gaussian matrix with m rows, need                           
for recovery of x.

codim(U) ≥ w(C)2

w(C) = E
�

max
x∈C∩Sn−1

�x, g�
�

m ≥ w(TA(x))2

g ∼ N (0, In)



• Suppose we observe

• If     is an optimal solution, then                           
provided that

Robust Recovery

minimize �z�A
subject to �Φz − y� ≤ δ

�w�2 ≤ δ

�x− x̂� ≤ 2δ

�
x̂

y = Φx + w

{z : �z�A ≤ �x�A}

�Φz − y� ≤ δ

m ≥ c0w(TA(x))2

(1− �)2



• Hypercube:

• Sparse Vectors, n vector, sparsity s<0.25n

• Block sparse, M groups (possibly overlapping), 
maximum group size B, k active groups

• Low-rank matrices: n1 x n2, (n1<n2), rank r

Calculating Widths
m ≥ n/2

m ≥ 2s

�
log

�
n− s

s

�
+ 1

�

m ≥ 3r(n1 + n2 − r)

m ≥ 2k (log (M − k) + B) + k



General Cones
• Theorem: Let C be a nonempty cone with polar 

cone C*.  Suppose C* subtends normalized solid 
angle µ.  Then

• Corollary: For a vertex-transitive (i.e., 
“symmetric”) polytope with p vertices, O(log p) 
Gaussian measurements are sufficient to recover a 
vertex via convex optimization.

• For n x n permutation matrix: m = O(n log n)
• For n x n cut matrix: m = O(n)

w(C) ≤ 3

�

log
�

4
µ

�



Algorithms 

• Naturally amenable to projected gradient algorithm:

• Relaxations:

• Hierarchy of relaxations based on θ-Bodies yield 
progressively tighter bounds on the atomic norm

zk+1 = Πηµ(zk − ηΦ∗rk)

minimizez �Φz − y�2
2 + µ�z�A

“shrinkage” Πτ (z) = arg min
u

1
2�z − u�2 + τ�u�A

A1 ⊂ A2 =⇒ �x�A2 ≤ �x�A1

NB! tangent cone 
gets wider



Atomic Norm Decompositions

• Propose a natural convex heuristic for enforcing 
prior information in inverse problems

• Bounds for the linear case: heuristic succeeds for 
most sufficiently large sets of measurements

• Stability without restricted isometries

• Standard program for computing these bounds: 
distance to normal cones

• Algorithms and approximation schemes for 
computationally difficult priors



Extensions...
• Width Calculations for more general structures

• Recovery bounds for structured measurement 
matrices (application specific)

• Incorporating stochastic noise models

• Understanding of the loss due to convex relaxation 
and norm approximation

• Scaling generalized shrinkage algorithms to massive 
data sets



JELLYFISH
• SGD for Matrix Factorizations.

 
• Idea: approximate

• Step 1: Pick (u,v) and compute residual: 

• Step 2: Take a gradient step:

minimize(L,R)

�

(u,v)∈E

�
(LuRT

v − Zuv)2 + µu�Lu�2
F + µv�Rv�2

F

�

e = (LuRT
v − Zuv)

�
Lu

Rv

�
←

�
(1− γµu)Lu − γeRv

(1− γµv)Rv − γeLu

�

minimize
�

(u,v)∈E(Xuv −Muv)2 + µ�X�∗
X ≈ LRT

Example:

with Christopher Ré



Observation: With replacement sample=poor locality
Idea: Bias sample to improve locality.

Algorithm: Shuffle the data.
1. Process {L1R1, L2R2, L3R3} in parallel
2. Process {L1R2, L2R3, L3R1} in parallel
3. Process {L1R3, L2R1, L3R2} in parallel

Big win: No locks! 
(model access)

JELLYFISH



Example Optimization
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• Shuffle all the rows and 
columns

• Apply block partitioning 

• Train on each block 
independently

• Repeat...

• Solves Netflix prize in 
under 1 minute on a 40 
core machine

• Over 100x faster than 
standard solvers

Example Optimization




