Wavelets and Filter Banks on Graphs

Pierre Vandergheynst
Signal Processing Lab, EPFL
Joint work with David Shuman

Duke Workshop on Sensing and Analysis of High-Dimensional Data
Duke University, July 2011
Processing Signals on Graphs

United States transmission grid
Source: FEMA

Social Network

Electrical Network

“Neuronal” Network

Transportation Network
Processing Signals on Graphs

United States transmission grid
Source: FEMA

Electrical Network

Social Network

“Neuronal” Network

Transportation Network
Short outline

- Summary of one wavelet construction on graphs
 - multiscale, filtering
- Pyramidal algorithms
 - polyphase components and downsampling
 - the Laplacian Pyramid
 - 2-channels, critically sampled filter banks
Spectral Graph Wavelets

\(G = (E, V) \) a weighted undirected graph, with Laplacian \(\mathcal{L} = D - A \)
Spectral Graph Wavelets

\[G = (E, V) \] a weighted undirected graph, with Laplacian \(\mathcal{L} = D - A \)

Dilation operates through operator: \(T_g^t = g(t\mathcal{L}) \)
Spectral Graph Wavelets

\(G = (E, V) \) a weighted undirected graph, with Laplacian \(\mathcal{L} = D - A \)

Dilation operates through operator: \(T^t_g = g(t \mathcal{L}) \)

Translation (localization):

Define \(\psi_{t,j} = T^t_g \delta_j \) response to a delta at vertex \(j \)

\[
\psi_{t,j}(i) = \sum_{\ell=0}^{N-1} g(t \lambda_{\ell}) \phi_{\ell}^*(j) \phi_{\ell}(i) \quad \mathcal{L} \phi_{\ell}(j) = \lambda_{\ell} \phi_{\ell}(j)
\]

\[
\psi_{t,a}(u) = \int_{\mathbb{R}} d\omega \hat{\psi}(t\omega)e^{-j\omega a}e^{j\omega u}
\]
Spectral Graph Wavelets

$G = (E, V)$ a weighted undirected graph, with Laplacian $\mathcal{L} = D - A$

Dilation operates through operator: $T_g^t = g(tL)$

Translation (localization):

Define $\psi_{t,j} = T_g^t \delta_j$ response to a delta at vertex j

$$\psi_{t,j}(i) = \sum_{\ell=0}^{N-1} g(t\lambda_\ell) \phi^*_{\ell}(j) \phi_{\ell}(i) \quad \mathcal{L}\phi_{\ell}(j) = \lambda_\ell \phi_{\ell}(j)$$

$$\psi_{t,a}(u) = \int_{\mathbb{R}} d\omega \hat{\psi}(t\omega) e^{-j\omega a} e^{j\omega u}$$

And so formally define the graph wavelet coefficients of f:

$$W_f(t, j) = \langle \psi_{t,j}, f \rangle$$

$$W_f(t, j) = T_g^t f(j) = \sum_{\ell=0}^{N-1} g(t\lambda_\ell) \hat{f}(\ell) \phi_{\ell}(j)$$
Frames

\[\exists A, B > 0, \exists h : \mathbb{R}_+ \to \mathbb{R}_+ \text{ (i.e. scaling function)} \]

\[0 < A \leq h^2(u) + \sum_s g(t_s u)^2 \leq B < \infty \]

\[\phi_n = T_h \delta_n = h(L) \delta_n \]

A simple way to get a tight frame:

\[\gamma(\lambda) = \int_{1/2}^{1} \frac{dt}{t} g^2(t\lambda) \quad \Rightarrow \quad \tilde{g}(\lambda) = \sqrt{\gamma(\lambda) - \gamma(2\lambda)} \]

for any admissible kernel \(g \)
Scaling & Localization

\[\psi_{t,i}(j) \]
Scaling & Localization

$\psi_{t,i}(j)$

decreasing scale
Example
Example
Example
Example
Example
Example
Sparsity and Smoothness on Graphs

scaling functions coeffs

Sensing and Analysis of High-D Data
Duke University July 2011
Remark on Implementation

Not necessary to compute spectral decomposition for filtering

Polynomial approximation: \(g(t\omega) \approx \sum_{k=0}^{K-1} a_k(t)p_k(\omega) \)

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

\[T_g^t \approx \sum_{k=0}^{K-1} a_k(t)\mathcal{L}^k \]

And use sparsity of Laplacian in an iterative way
Remark on Implementation

\[\tilde{W}_f(t, j) = (\rho(\mathcal{L}) f^\#)_j \quad |W_f(t, j) - \tilde{W}_f(t, j)| \leq B \|f\| \]

sup norm control (minimax or Chebyshev)

\[\tilde{W}_f(t_n, j) = \left(\frac{1}{2} c_{n,0} f^\# + \sum_{k=1}^{M_n} c_{n,k} \overline{T}_k(\mathcal{L}) f^\# \right)_j \]

\[\overline{T}_k(\mathcal{L}) f = \frac{2}{a_1} (\mathcal{L} - a_2 I) (\overline{T}_{k-1}(\mathcal{L}) f) - \overline{T}_{k-2}(\mathcal{L}) f \]

Computational cost dominated by matrix-vector multiply with (sparse) Laplacian matrix.
In particular \(O(\sum_{n=1} M_n |E|) \)

Note: “same” algorithm for adjoint!

http://wiki.epfl.ch/sgwt
Graph wavelets

• Redundancy breaks sparsity
 - can we remove some or all of it?

• Faster algorithms
 - traditional wavelets have fast filter banks implementation
 - whatever scale, you use the same filters
 - here: large scales -> more computations

• Goal: solve both problems at one
Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling
Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling
Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Filtering is fine but how do we downsample on graphs ??
Basic Ingredients

Subsampling is equivalent to splitting in two cosets (even, odd)

\[\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \]

\[\bullet \ \bigcirc \ \bullet \ \bigcirc \ \bullet \ \bigcirc \ \bullet \ \bigcirc \]
Basic Ingredients

Subsampling is equivalent to splitting in two cosets (even, odd)

Questions:
- How do we partition a graph into meaningful cosets?
- Are there efficient algorithms for these partitions?
- Are there theoretical guarantees?
- How do we define a new graph from the cosets?
Cosets - A spectral view

Subsampling is equivalent to splitting in two cosets (even, odd)

\[f_{sub}(i) = \frac{1}{2} f(i)(1 + \cos(\pi i)) \]

Classically, selecting a coset can be interpreted easily in Fourier:

- eigenvector of largest eigenvalue
Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally $|V|!$

Nodal domains of Laplacian eigenvectors are special (and well studied)
Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t. a reference function

We would like to find a very large number of nodal domains, ideally $|V|$!

Nodal domains of Laplacian eigenvectors are special (and well studied)

Theorem: the number of nodal domains associated to the largest laplacian eigenvector of a connected graph is maximal,

$$\nu(\phi_{\text{max}}) = \nu(G) = |V|$$

IFF G is bipartite

In general: $\nu(G) = |V| - \chi(G) + 2$ (extreme cases: bipartite and complete graphs)
Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally \(|V|\)!

Nodal domains of Laplacian eigenvectors are special (and well studied)

For any connected graph we will thus naturally define cosets and their associated selection functions

\[
V_+ = \{ i \in V \text{ s.t. } \phi_{N-1}(i) \geq 0 \} \\
M_+(i) = \frac{1}{2} (1 + \text{sgn}(\phi_{N-1}(i))) \\
V_- = \{ i \in V \text{ s.t. } \phi_{N-1}(i) < 0 \} \\
M_-(i) = \frac{1}{2} (1 - \text{sgn}(\phi_{N-1}(i)))
\]
Examples of cosets

Simple line graph

\[\phi_k(u) = \sin\left(\frac{\pi ku}{n} + \frac{\pi}{2n}\right) \quad \lambda_k = 2 - 2 \cos\left(\frac{\pi k}{n}\right) \quad 1 \leq k \leq n \]
Examples of cosets

Simple line graph

\[\phi_k(u) = \sin\left(\frac{\pi ku}{n} + \frac{\pi}{2n}\right) \quad \lambda_k = 2 - 2 \cos\left(\frac{\pi k}{n}\right) \quad 1 \leq k \leq n \]
Examples of cosets

Simple line graph

Simple ring graph

\[\phi_1^k(u) = \sin\left(\frac{2\pi k u}{n}\right) \quad \phi_2^k(u) = \cos\left(\frac{2\pi k u}{n}\right) \quad 1 \leq k \leq n/2 \]

\[\lambda_k = 2 - 2 \cos\left(\frac{2\pi k}{n}\right) \]
Examples of cosets

Simple line graph

\[\phi^1_k(u) = \sin\left(\frac{2\pi ku}{n}\right) \quad \phi^2_k(u) = \cos\left(\frac{2\pi ku}{n}\right) \quad 1 \leq k \leq n/2 \]

\[\lambda_k = 2 - 2 \cos\left(\frac{2\pi k}{n}\right) \]
Examples of cosets

Simple line graph

Simple ring graph

Lattice
Examples of cosets

Simple line graph

Simple ring graph

Lattice

quincunx
The Agonizing Limits of Intuition

- Multiplicity of λ_{max}
 - how do we choose the control vector in that subspace?
 - even a prescription can be numerically ill-defined
 - graphs with “flat” spectrum in close to their spectral radius

- Laplacian eigenvectors do not always behave like global oscillations
 - seems to be true for random perturbations of simple graphs
 - true even for a class of trees [Saito2011]
The Laplacian Pyramid

Analysis operator

\[x \rightarrow H \rightarrow G \rightarrow U \rightarrow y_{low} \]

\[y_1 \rightarrow - \]
The Laplacian Pyramid

Analysis operator

\[x \rightarrow \begin{array}{c}
H \\
D \\
U \\
\end{array} \rightarrow \begin{array}{c}
y_0 \\
\end{array} \]

\[\begin{array}{c}
G \\
\end{array} \rightarrow \begin{array}{c}
y_1 \\
\end{array} \]
The Laplacian Pyramid

Analysis operator

\[x \rightarrow H \rightarrow \text{G} \rightarrow \text{M} \rightarrow y_0 \]

\[y_1 \rightarrow \text{G} \rightarrow \text{M} \rightarrow y_0 \]
The Laplacian Pyramid

Analysis operator

\[y_0 = H_m x \]
\[= MHx \]

\[y_1 = x - G y_0 \]
\[= x - GH_m x \]
The Laplacian Pyramid

Analysis operator

\[x \xrightarrow{\text{H}} \xrightarrow{\text{M}} \xrightarrow{\text{G}} y_0 \xrightarrow{\text{y}} y_1 \]
The Laplacian Pyramid

Analysis operator

\[\begin{pmatrix} y_0 \\ y_1 \\ y \end{pmatrix} = \begin{pmatrix} H_m & I - GH_m & T_a \end{pmatrix} x, \]

\[y_0 = H M x \]

\[y_1 = x - G y_0 \]

\[y_0 = H M x = MHx = MV \tilde{H} V^T x, \]

where \(V = [v_0 | v_1 | ... | v_{n-1}] \) is the matrix of the eigenvectors of the graph Laplacian and \(\tilde{H} \) is a diagonal matrix with \(\lambda \) entries on the diagonal and zeros elsewhere.

\(\text{upsampling by masking operator} \)

\(M \) is a diagonal matrix with ones at the diagonal entries corresponding to the location of the selected vertices \(v \) and zeros elsewhere.

Then we will pass the output of the masking block through a second filter \(g \) in order to reconstruct the original function \(x \). Finally, the reconstruction error is easily computed by taking the difference of the original signal and the output of the second filter.

Consider an input graph \(x \) signal \(x \in \mathbb{R}^n \). In our notation, \(y_0 = H M x \) denotes the output of the first stage followed by the masking operator. This is the output of the lowpass channel in the LP framework.
The Laplacian Pyramid

Analysis operator

\[
\begin{pmatrix}
 y_0 \\
y_1
\end{pmatrix}
= \begin{pmatrix}
 H_m \\
 I - GH_m
\end{pmatrix}
\begin{pmatrix}
 x
\end{pmatrix},
\]

\[T_a\]
The Laplacian Pyramid

Analysis operator

\[
\begin{pmatrix}
y_0 \\
y_1 \\
y
\end{pmatrix} = \begin{pmatrix}
H_m \\
I - GH_m
\end{pmatrix}_T a x,
\]

Simple (traditional) left inverse

\[
\hat{x} = \begin{pmatrix}
G & I
\end{pmatrix}_T s \begin{pmatrix}
y_0 \\
y_1 \\
y
\end{pmatrix}
\]

\[T_s T_a = I \quad \text{with no conditions on } H \text{ or } G\]
The Laplacian Pyramid

Pseudo Inverse?

\[T_a^\dagger = (T_a^T T_a)^{-1} T_a^T \]

Let’s try to use only filters
The Laplacian Pyramid

Pseudo Inverse ?

$T_a^\dagger = (T_a^T T_a)^{-1} T_a^T$

Let’s try to use only filters

Define iteratively, through descent on LS:

$\arg \min_x \|T_a x - y\|_2^2 \quad \Rightarrow \quad \hat{x}_{k+1} = \hat{x}_k + \tau T_a^T (y - T_a \hat{x}_k)$

$T_a^T = (H_m^T \quad I - H_m^T G^T)$
The Laplacian Pyramid

we can easily implement $T_a^T T_a$ with filters and masks:

$$x_N = \tau \sum_{j=0}^{N-1} (I - \tau Q)^j b$$

Use Chebyshev approximation of:

$$L(\omega) = \tau \sum_{j=0}^{N-1} (1 - \tau \omega)^j$$
Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

\[A_r = A[\alpha, \alpha] - A[\alpha, \alpha]A(\alpha, \alpha)^{-1}A(\alpha, \alpha) \]

\[A = \begin{bmatrix} A[\alpha, \alpha] & A[\alpha, \alpha] \\ A(\alpha, \alpha) & A(\alpha, \alpha) \end{bmatrix} \]
In order to iterate the construction, we need to construct a graph on the reduced vertex set.

\[
A_r = A[\alpha, \alpha] - A[\alpha, \alpha]A(\alpha, \alpha)^{-1}A(\alpha, \alpha)
\]

\[
A = \begin{bmatrix}
A[\alpha, \alpha] & A[\alpha, \alpha] \\
A(\alpha, \alpha) & A(\alpha, \alpha)
\end{bmatrix}
\]

Kron Reduction

[Dorfler et al, 2011]
Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

\[A_r = A[\alpha, \alpha] - A[\alpha, \alpha]A(\alpha, \alpha)^{-1}A(\alpha, \alpha) \]

\[A = \begin{bmatrix} A[\alpha, \alpha] & A[\alpha, \alpha] \\ A(\alpha, \alpha) & A(\alpha, \alpha) \end{bmatrix} \]

Properties:
- maps a weighted undirected laplacian to a weighted undirected laplacian
- spectral interlacing (spectrum does not degenerate)
 \[\lambda_k(A) \leq \lambda_k(A_r) \leq \lambda_{k+n-|\alpha|}(A) \]
- disconnected vertices linked in reduced graph IFF there is a path that runs only through eliminated nodes
Example

Note: For a k-regular bipartite graph

\[L = \begin{bmatrix} kI_n & -A \\ -A^T & kI_n \end{bmatrix} \]

Kron-reduced Laplacian: \(L_r = k^2I_n - AA^T \)
Note: For a k-regular bipartite graph

\[
L = \begin{bmatrix}
kI_n & -A \\
-A^T & kI_n
\end{bmatrix}
\]

Kron-reduced Laplacian: \(L_r = k^2I_n - AA^T \)

\[
\hat{f}_r(i) = \hat{f}(i) + \hat{f}(N - i) \quad i = 1, ..., N/2
\]
Filter Banks

2 critically sampled channels

\[
\begin{array}{c}
\text{Coset 1} \\
\text{Coset 2}
\end{array}
\]

\[
\begin{array}{c}
\text{Filter } H \\
\text{Filter } G
\end{array}
\]

\[
\begin{array}{c}
\text{Downsample} \\
\text{Downsample}
\end{array}
\]

\[
f_0
\]
Filter Banks

2 critically sampled channels

\[f_0 \]

\[\begin{align*}
\text{Filter } H & \quad \text{Downsample} \\
\text{Coset 1} & \\
\text{Filter } G & \quad \text{Downsample} \\
\text{Coset 2} &
\end{align*} \]

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF

\[|H(i)|^2 + |G(i)|^2 = 2 \]

\[H(i)G(N - i) + H(N - i)G(i) = 0 \]
Conclusions

• Structured, data dependent dictionary of wavelets
 - sparsity and smoothness on graph are merged in simple and elegant fashion
 - fast algo, clean problem formulation
 - graph structure can be totally hidden in wavelets

• Filter banks based on nodal domains or coloring
 - Universal algo based on filtering and Kron reduction
 - Efficient IFF *some* structure in the graph
 - Unfortunately no closed form theory in general
Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and **Translation** (or localization)

\[\psi_{s,a}(x) = \frac{1}{s} \psi \left(\frac{x - a}{s} \right) \]
Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

$$\psi_{s,a}(x) = \frac{1}{s} \psi \left(\frac{x - a}{s} \right)$$

$$(T^s f)(a) = \int \frac{1}{s} \psi^* \left(\frac{x - a}{s} \right) f(x) dx \quad (T^s f)(a) = \langle \psi_{s,a}, f \rangle$$
Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and **Translation** (or localization)

\[
\psi_{s,a}(x) = \frac{1}{s} \psi \left(\frac{x - a}{s} \right)
\]

\[
(T^s f)(a) = \int \frac{1}{s} \psi^* \left(\frac{x - a}{s} \right) f(x) dx \quad (T^s f)(a) = \langle \psi_{s,a}, f \rangle
\]

Equivalently:

\[
(T^s \delta_a)(x) = \frac{1}{s} \psi^* \left(\frac{x - a}{s} \right)
\]

\[
(T^s f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^*(s\omega) \hat{f}(\omega) d\omega
\]
Graph Laplacian and Spectral Theory

\[G = (V, E, w) \] weighted, undirected graph

Non-normalized Laplacian: \[\mathcal{L} = D - A \] Real, symmetric

\[(\mathcal{L} f)(i) = \sum_{i \sim j} w_{i,j} (f(i) - f(j)) \]

Why Laplacian?
Graph Laplacian and Spectral Theory

\[G = (V, E, w) \] weighted, undirected graph

Non-normalized Laplacian: \(\mathcal{L} = D - A \) Real, symmetric

\[
(\mathcal{L} f)(i) = \sum_{i \sim j} w_{i,j} (f(i) - f(j))
\]

Why Laplacian? \(\mathbb{Z}^2 \) with usual stencil

\[
(\mathcal{L} f)_{i,j} = 4f_{i,j} - f_{i+1,j} - f_{i-1,j} - f_{i,j+1} - f_{i,j-1}
\]

In general, graph laplacian from nicely sampled manifold converges to Laplace-Beltrami operator
Graph Laplacian and Spectral Theory

\[\frac{d^2}{dx^2} \quad \Rightarrow \quad e^{i\omega x} \quad \Rightarrow \quad f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{i\omega x} \, d\omega \]
Graph Laplacian and Spectral Theory

\[\frac{d^2}{dx^2} \quad \implies \quad e^{i\omega x} \quad \implies \quad f(x) = \frac{1}{2\pi} \int \hat{f}(\omega)e^{i\omega x} \, d\omega \]

Eigen decomposition of Laplacian: \(\mathcal{L}\phi_l = \lambda_l \phi_l \)
Graph Laplacian and Spectral Theory

\[\frac{d^2}{dx^2} \rightarrow e^{i\omega x} \rightarrow f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{i\omega x} d\omega \]

Eigen decomposition of Laplacian: \(\mathcal{L}\phi_l = \lambda_l \phi_l \)

For simplicity assume connected graph and \(0 = \lambda_0 < \lambda_1 \leq \lambda_2 \ldots \leq \lambda_{N-1} \)

For any function on the vertex set (vector) we have:

\[\hat{f}(l) = \langle \phi_l, f \rangle = \sum_{i=1}^{N} \phi_l^*(i) f(i) \quad \text{Graph Fourier Transform} \]

\[f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \phi_\ell(i) \]
Spectral Graph Wavelets

Remember good old Euclidean case:

\[(T^s f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^*(s\omega) \hat{f}(\omega) d\omega\]

We will adopt this operator view
Spectral Graph Wavelets

Remember good old Euclidean case:

\[
(T^s f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^*(s\omega) \hat{f}(\omega) d\omega
\]

We will adopt this operator view

Operator-valued function via continuous Borel functional calculus

\[
g : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \quad T_g = g(\mathcal{L}) \quad \text{Operator-valued function}
\]

Action of operator is induced by its Fourier symbol

\[
\hat{T}_g \hat{f}(\ell) = g(\lambda_\ell) \hat{f}(\ell) \quad (T_g f)(i) = \sum_{\ell=0}^{N-1} g(\lambda_\ell) \hat{f}(\ell) \phi_\ell(i)
\]
Non-local Wavelet Frame

- Non-local Wavelets are ...

... Graph Wavelets on Non-Local Graph

Interest: good *adaptive* sparsity basis
Distributed Computation

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian
Distributed Computation

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute: \((\tilde{\Phi} f)_{(j-1)N+n} = \left(\frac{1}{2} c_{j,0} f + \sum_{k=1}^{M} c_{j,k} \overline{T}_k(L)f \right)_n \)
Distributed Computation

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute: \((\tilde{\Phi} f)_{(j-1)N+n} = \left(\frac{1}{2} c_{j,0} f + \sum_{k=1}^{M} c_{j,k} T_k(L) f\right)_n\)

\[\left(\overline{T}_1(L) f\right)_n = \left(\frac{2}{\alpha} (L - \alpha I) f\right)_n\]
sensor only needs f(n) from its neighbors
Distributed Computation

Scenario: Network of N nodes, each knows
- local data $f(n)$
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute: \[(\tilde{\Phi} f)_{(j-1)N+n} = (\frac{1}{2} c_{j,0} f + \sum_{k=1}^{M} c_{j,k} \overline{T}_k(\mathcal{L}) f)_{n}\]

\[\left(\overline{T}_1(\mathcal{L}) f\right)_{n} = \left(\frac{2}{\alpha} (\mathcal{L} - \alpha I) f\right)_{n}\]
sensor only needs $f(n)$ from its neighbors

\[\left(\overline{T}_k(\mathcal{L}) f\right) = \frac{2}{\alpha} (\mathcal{L} - \alpha I) \left(\overline{T}_{k-1}(\mathcal{L}) f\right) - \overline{T}_{k-2}(\mathcal{L}) f\]
Computed by exchanging last computed values
Distributed Computation

Communication cost: $2M|E|$ messages of length 1 per node

Example: distributed denoising, or distributed regression, with Lasso

$$\arg\min_a \frac{1}{2} \| y - \Phi^* a \|^2 + \|a\|_{1,\mu}$$

$$a_i^{(k)} = S_{\mu_i,\tau} \left([a^{k-1} + \tau \Phi (y - \Phi^* a^{k-1})]_i \right)$$

$$S_{\mu_i\tau}(z) := \begin{cases} 0, & \text{if } |z| \leq \mu_i\tau \\ z - \text{sgn}(z)\mu_i\tau, & \text{o.w.} \end{cases}$$

Total communication cost:

Distributed Lasso [Mateos, Bazerque, Gianakis] \hspace{1cm} Cost $\sim |E|N$

Chebyshev Φy \hspace{1cm} $2M|E|$ messages of length 1 \hspace{1cm} Cost $\sim |E|$

$\Phi \Phi^* a$ \hspace{1cm} $4M|E|$ messages of length $J+1$
Wavelets on Graphs?

- Existing constructions
 - wavelets on meshes (computer graphics, numerical analysis), often via lifting
 - diffusion wavelets [Maggioni, Coifman & others]
 - recently several other constructions based on “organizing” graph in a multiscale way [Gavish-Coifman]

- Goal
 - process signals on graphs
 - retain simplicity and signal processing flavor
 - algorithm to handle fairly large graphs
Scaling & Localization

Effect of operator dilation?
Scaling & Localization

Effect of operator dilation?
Effect of operator dilation?
Scaling & Localization

Effect of operator dilation?

Theorem: $d_G(i, j) > K$ and g has K vanishing derivatives at 0

$$\frac{|\psi_{t,j}(i)|}{\|\psi_{t,j}\|} \leq Dt \quad \text{for any } t \text{ smaller than a critical scale}$$

function of $d_G(i, j)$

Reason? At small scale, wavelet operator behaves like power of Laplacian