SURE Estimation in a Heteroscedastic Hierarchical Model

Lawrence D Brown Statistics Department, Wharton School University of Pennsylvania

Joint work with S. Kou and X. Xie (Harvard)

SAHD conference, Duke Univ, July 28, 2011 Normal Location Problem (Heteroscedastic)

Observe:

$$X_i \sim N(\theta_i, \sigma_i^2)$$
, independent, $i = 1,..., p$.

 σ_i^2 known (for this talk), and not necessarily equal.

Goal:

Estimate
$$\theta = (\theta_1, ..., \theta_p)'$$
 by $\hat{\theta} = (\hat{\theta}_1, ..., \hat{\theta}_p)$

Measure quality of estimation procedure by

$$R\!\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}\right) \coloneqq E_{\boldsymbol{\theta}}\!\left(p^{-1} \parallel \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \parallel^2\right) \coloneqq E_{\boldsymbol{\theta}}\!\left(L\!\left(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}\right)\right).$$

Variations and generalizations are of interest.

An Example: Predicting Batting Averages

 R_i = Batting average of Major Leaguer *i* for 1st half of 2005 season. (*Validate estimates using 2nd half batting records.*)

• Model: $R_i \sim \text{Bin}(n_i, p_i)$. Restrict sample to $n_i \ge 11$.

• Let
$$X_i = \sin^{-1} \sqrt{\frac{R_i + 1/4}{n_i + 1/2}} \approx N \left(\theta_i, \frac{1}{4n_i} \right)$$

 $\ni \theta_i = \sin^{-1} \sqrt{p_i}.$

• Use $\{X_i\}$ to estimate $\{\theta_i\}$ under S.E. loss.

Hierarchical Bayes Estimators

• E-B hierarchy

$$X_i | \theta_i \sim N(\theta_i, \sigma_i^2)$$

 $\theta_i | \lambda \sim G_\lambda$, independent.

• Standard, Conjugate structure

$$G_{\lambda} = N(0,\lambda).$$

- Bayes Estimate given G_{λ} : $\hat{\theta}_{i}^{\lambda} = E_{G_{\lambda}}(\theta_{i}|X_{i})$.
- E-B estimator: Estimate λ from the sample & plug in.
- Full Bayes hierarchy

$$\lambda \sim H$$
 (*H* is assumed known).

• Full Bayes estimator: $\hat{\theta}_i^{\text{Bayes}_H} = E_{\lambda \sim H} (\theta_i | X_i)$

SURE

For an estimator of the form

$$\hat{\theta}_i(x) := x_i + \xi_i(x),$$

$$R(\theta, \hat{\theta}) = E_{\theta}(\text{SURE}) := E_{\theta} \left[p^{-1} \sum_{i} \left(\sigma_{i}^{2} + 2\sigma_{i}^{2} \frac{\partial}{\partial X_{i}} \xi_{i}(X) + \xi_{i}^{2}(X) \right) \right].$$

• Conjugate prior Bayes estimator (with known λ):

$$\hat{\theta}_i^{\lambda} = \frac{\lambda}{\lambda + \sigma_i^2} X_i.$$

• Then,

SURE(
$$\lambda$$
) = $p^{-1} \sum \left[\frac{\sigma_i^2}{\sigma_i^2 + \lambda} X_i^2 + \sigma_i^2 \frac{\lambda - \sigma_i^2}{\sigma_i^2 + \lambda} \right]$.

(Since Bayes estimator is linear this is also Mallow's C_P .)

• The SURE estimator is $\hat{\theta}^{\text{SURE}} := \theta^{\hat{\lambda}_{\text{SURE}}}$ with $\hat{\lambda}_{\text{SURE}} := \operatorname{argmin} \{ \text{SURE}(\lambda) \}.$

SO

$$\hat{\lambda}_{\text{SURE}} \text{ solves } \sum \left[\frac{\sigma_i^4}{\left(\sigma_i^2 + \lambda\right)^3} X_i^2 - \frac{\sigma_i^4}{\left(\sigma_i^2 + \lambda\right)^2} \right] = 0 *.$$

• For comparison, the E-B MLE estimator is similar but

$$\hat{\lambda}_{\text{MLE}} \text{ solves } \sum \left[\frac{\sigma_i^2}{\left(\sigma_i^2 + \lambda\right)^2} X_i^2 - \frac{1}{\sigma_i^2 + \lambda} \right] = 0 *.$$

And, a conventional E-B Method of Moments

$$\hat{\lambda}_{MM}$$
 solves $\sum [X_i^2 - \sigma_i^2 - \lambda] = 0 *.$

The Homoscedastic Case

- Assume $\sigma_i^2 \equiv \sigma^2$ (σ^2 known, for now).
- Then

$$\hat{\theta}^{\text{SURE}} = \hat{\theta}^{\text{MLE}} = \hat{\theta}^{\text{MM}} = \left(1 - \frac{\mathbf{p}}{\|X\|^2} \sigma^2\right)_{+} X.$$

• By contrast, the JAMES-STEIN⁺ estimator is

$$\hat{\theta}^{JS} = \left(1 - \frac{\mathbf{p} - 2}{\|X\|^2} \sigma^2\right)_+ X.$$

• The slight difference is a reflection the SURE logic. (SURE can derive the choice **p-2** if used differently.)

"SURESHRINK" See Donoho and Johnstone (1995)

- Created for a related context.
- In our context uses

$$\hat{\theta}_i^{SS} = \operatorname{sgn}(X_i) (|X_i| - \hat{\xi}\sigma)_{+}.$$

And chooses $\hat{\xi}$ to minimize SURE (among all such soft threshold estimators with fixed ξ). [+ Truncated at $\sigma\sqrt{2\log p}$ to work better in a severely sparse setting.]

- Is regularized estimator for an L₁ penalty; and also
- Empirical-Bayes posterior mode under a Laplace prior with scale ξ .

Generalizations:

Change standard E-B hierarchy to

$$X_i | \theta_i \sim N(\theta_i, \sigma_i^2)$$

 $\theta_i | \lambda \sim N(\mu, \lambda).$

- Two possible estimators:
- 1. Estimate μ by \overline{X} and then apply SURE to get "best" estimator of the form $\hat{\theta}_i^{\lambda, \overline{X}} = \frac{\lambda}{\sigma_i^2 + \lambda} X_i + \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \overline{X}$
- 2. Apply the argmin in SURE over **both** hyperparameters $\hat{\sigma}^2$

$$\mu$$
 and λ to get "best" among $\hat{\theta}_i^{\lambda,\bar{X}} = \frac{\lambda}{\sigma_i^2 + \lambda} X_i + \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \mu$.

• Estimators notated as $\hat{\theta}^{\text{SURE1}}$ & $\hat{\theta}^{\text{SURE2}}$, resp.

Generalization: A Monotone Estimator

• Motivation: A semi-parametric complete hierarchy:

$$X_i | \theta_i \sim N(\theta_i, \sigma_i^2) \quad \theta_i | \lambda \sim N(\mu, \lambda)$$

and $\lambda \sim H$ (*H* unknown).

- Then $\hat{\theta}_i = (1 \beta_i) X_i + \beta_i \mu$ where $\beta_i = E_H \left(\frac{\lambda}{\sigma_i^2 + \lambda} \middle| X \right)$
- For a broad class of hyperpriors, H, & any fixed X $\beta \in \text{MON} := \left\{ b\left(\sigma_i^2\right) : b \text{ non-decreasing in } \sigma_i^2 \right\}$
- Hence we propose $\hat{\theta}_i^{\text{MON}} = (1 \hat{\beta}_i^{\text{MON}}) X_i + \hat{\beta}_i^{\text{MON}} \mu \ni$

$$\hat{\beta}_{i}^{\text{SM}}, \hat{\mu}^{\text{SM}} = \operatorname{argmin}_{\beta_{i} \in \text{MON}, \mu} \text{SURE} = \operatorname{argmin}_{\beta_{i} \in \text{MON}, \mu} \left(p^{-1} \sum_{j} \left(\beta_{j} \left(X_{j} - \mu \right)^{2} + \left(1 - 2\beta_{j} \right) \sigma_{i}^{2} \right) \right).$$

- Note: Many hierarchical Bayes estimators satisfy MON. Some others do as well:
- 1. If G has a log concave density, $\hat{\beta}_G \in MON$.
- 2. D & J's SURESHRINK soft threshold estimator also satisfies MON.
- $\hat{\theta}^{\text{MONM}}$ is a variant in which μ is estimated by \bar{X} .

Asymptotics

- All our SURE estimators are asymptotically optimal within their respective classes, under weak conditions:
- 1. $\limsup_{p\to\infty} p^{-1} \sum_{i=1}^p \sigma_i^4 < \infty$.
- 2. $\limsup_{p\to\infty} p^{-1} \sum_{i=1}^p \theta_i^2 < \infty$.
- 3. $\limsup_{p\to\infty} p^{-1} \sum_{i=1}^p \sigma_i^2 \theta_i^2 < \infty$.
 - For any of our estimator classes, \Im , define the oracle

$$\tilde{\theta}^{\Im} = \operatorname{argmin}_{d(X,\theta) \in \Im} L(\theta, d(X,\theta)). \quad \mathbf{THEN},$$

$$L(\theta, \hat{\theta}^{SURE, \Im}) = L(\theta, \tilde{\theta}^{\Im}) + o_{P}(1) \& \text{ also}$$

$$\operatorname{limsup}_{p \to \infty} \left[R(\theta, \hat{\theta}^{SURE, \Im}) - E_{\theta}(L(\theta, \tilde{\theta}^{\Im})) \right] = 0.$$

Baseball Data

• All E-B estimators are of the form

$$\hat{\theta}_i = (\hat{\gamma}(n_i))X_i + (1 - \hat{\gamma}(n_i))\hat{\mu}.$$

Table of Values of $\hat{\mu}$

Method	$\hat{\mu}$	
$ar{X}$	0.5095	
MM	0.5276	
MLE	0.5382	
SURE1	0.5096	
SURE2	0.4557	
MON	0.5291	
MONM	0.5096	

Plot of values of $\hat{\gamma}$ for some estimators

$$\hat{\theta}_{i} = (\hat{\gamma}(n_{i}))X_{i} + (1 - \hat{\gamma}(n_{i}))\hat{\mu}$$

EB-MLE EB-MM SURE2 MON

Relative Risk of Various Estimators (as estimated from "holdout" sample = 2^{nd} half of season)

	All Batters	Non-pitchers	Only Pitchers
Naive	1	1	1
Grand Mean	0.853	0.378	0.127
EB-MM	0.585	0.357	0.129
EB-MLE	0.888	0.398	0.118
J-S (to mean)	0.535	0.348	0.165
SURE1	0.505	0.278	0.123
SURE2	0.422	0.282	0.123
MON	0.419	0.278	0.077
MONM	0.409	0.261	0.081

Plot of Some Estimators

Simulation #1: An ideal situation:

$$X_i \sim N(\theta_i, \sigma_i^2), \theta_i \sim N(0,1), \sigma_i^2 \sim \text{Unif}(0.1,1) \text{ [observe } X_i, \sigma_i^2\text{]}$$

Simulation #5: A two-groups situation $X_i \sim N(\theta_i, \sigma_i^2)$, $\theta_i \sim N(2, 0.1)$ or N(0, 0.5), $\sigma_i^2 \sim 0.1$ or 0.5

Summary

- Possibly heteroscedastic model [Normal, or approx. normal, variances known or estimable.]
- Consider a family of estimators, $\hat{\theta}^{\lambda}$. [Maybe generated from a hierarchical Bayes structure.]
- Write the SURE estimate of risk for fixed λ .
- Minimize this over λ at observed X.
- Estimator has desirable asymptotic properties [for all the families we consider], and
- Estimator performs well in practical examples and simulations