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Normal Location Problem (Heteroscedastic)

Observe:
X, ~ N(&’i,af), independent, i =1,.., p.

O’l-z known (for this talk), and not necessarily equal.

Goal:
Estimate 6 = (6’1,..,6’p )’ by 0 = (él’”’ép)

Measure quality of estimation procedure by
R(0.0):=E,(p" 10-0"):=E, (L(H,H)).

Variations and generalizations are of interest.



An Example: Predicting Batting Averages

R, = Batting average of Major Leaguer i for 1* half of 2005
season. (Validate estimates using 2 half batting records.)

* Model: R, ~Bin(n;, p,). Restrict sample to n, =11.

R
* Let X.=sin‘1\/Ri+1/4zN H-,—
l n+1/2 L' 4n.

\ i /

5 6, =sin™ \/p,.

* Use {X,} to estimate {6,} under S.E. loss.




Hierarchical Bayes Estimators
* E-B hierarchy

X,|0,~N(6,,0;)
A~G,, independent.

Hi

* Standard, Conjugate structure
G,=N(0.2).

* Bayes Estimate given G, : éf =E; (8.

l

X,).

* E-B estimator: Estimate A from the sample & plug 1n.

* Full Bayes hierarchy
A~H (H 1s assumed known).

* Full Bayes estimator: OAZ.BayeSH =E, , (Hl. Xl.)




SURE
e For an estimator of the form

A

0,(x)=x,+&(x),

A

R(6.6)= E,(SURE) = E, _p-l (0.2 +202 2 l.(X)+§f(X))-.

* Conjugate prior Bayes estimator (with known A):

T _X,.
A+oO,
* Then,
2 2
O, A—0O;
SURE(A)=p™ i X?+07 L,
( ) P ol+A " T ol+A

(Since Bayes estimator is linear this is also Mallow’s Cp.)




e The SURE estimator is 6°"%F = 0™% with
Ay = argmin{SURE(A)}.
SO

A 4 4
Asure SOlVES 2 (O;ji )L)S X2 - (G;: A)z =0 *.

* For comparison, the E-B MLE estimator is similar but

=0 *.

)IMLE solves E (02 ;1)2 X - ——

* And, a conventional E-B Method of Moments
Ay SOLVES E[Xf -0 - )L] =0 *.



The Homoscedastic Case
* Assume o; =0 (0” known, for now).

* Then
éSURE _ AMLE _ éMM _|1_ P : o2
x|~ ).
e By contrast, the JAMES-STEIN" estimator is
éJS _ 1_ p -2 ().2
2
X[,

 The slight difference 1s a reflection the SURE logic.
(SURE can derive the choice p-2 if used differently.)



“SURESHRINK”™
See Donoho and Johnstone (1995)

e Created for a related context.
* [n our context uses
0% =sgn(X )( Q’G) .
And chooses 5 to minimize SURE (among all such soft

threshold estimators with fixed £). [+ Truncated at o/2log p
to work better in a severely sparse setting. |

* [s regularized estimator for an L; penalty; and also

* Empirical-Bayes posterior mode under a Laplace prior
with scale C.



Generalizations:
* Change standard E-B hierarchy to

X,|0,~N(6,,0;)

1

6,|A~N(U,1).

l

* Two possible estimators:

1. Estimate u by X and then apply SURE to get “best”
2

2;L X + ?" X

o’ +A o +A

2. Apply the argmin in SURE over both hyperparameters

A o’
X. + ’ :
ol +A al.2+)L‘u

estimator of the form éi“? =

uand A to get “best” among éi“? =

e Estimators notated as 60°"%! & 65U%E2 resp.



Generalization: A Monotone Estimator

* Motivation: A semi-parametric complete hierarchy:
X,|0,~N(6,,07) 6]|A~N(u,1)
and A ~ H (H unknown).

A

* Then 6, =(1- ) X, + B, where B, = E,;| —
o +A

|X

* For a broad class of hyperpriors, H, & any fixed X
p € MON = {b(of) : b non-decreasing in Uf}

* Hence we propose MO = (1 — /§l.MON)X BMONy 5
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/§SM A SM

;U =argming ooy, SURE =
argmin ; c\ion. (p—lz(/;’j (XJ- _ M)2 + (1 — Zﬁj)al.z )) :

* Note: Many hierarchical Bayes estimators satisty MON.
Some others do as well:

1. If G has a log concave density, /3’(; & MON.

2. D & J’s SURESHRINK soft threshold estimator also
satisfies MON.

e PMOM 5 a variant in which u is estimated by X.
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* Asymptotics
* All our SURE estimators are asymptotically optimal

within their respective classes, under weak conditions:

I. limsup,_, p‘lzilcﬁ‘ <,
2. limsup,_, p‘lz;ﬁf < o,
3. limsup,_, p‘lzil 0’07 <o,
* For any of our estimator classes, <3, define the oracle
o L(6-d(X.60)).  THEN,
L(H,HASURE’S) = L(H,és) +0,(1) & also
limsup, ., [R(H,éSURE’S) -E, (L(H,és))] =0.

~ N

6~ = argmin d
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Baseball Data
* All E-B estimators are of the form

0, = (f(nl))Xl +(1—)?(ni))ﬁ.

Table of Values of i

Method
X 0.5095
MM 0.5276
MLE 0.5382
SUREI 0.5096
SURE?2 0.4557
MON 0.5291
MONM 0.5096
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Plot of values of ¥ for some estimators
61' = (?(nz))Xl + (1 - )//\(nz))la

| ' | ' | ' | ' | ' | ' | ' |
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Relative Risk of Various Estimators
(as estimated from “holdout” sample = 2" half of season)

All Batters | Non-pitchers | Only Pitchers
Naive 1 1 1

Grand Mean 0.853 0.378 0.127
EB-MM 0.585 0.357 0.129
EB-MLE 0.888 0.398 0.118
J-S (to mean) 0.535 0.348 0.165
SUREI 0.505 0.278 0.123
SURE?2 0.422 0.282 0.123
MON 0.419 0.278 0.077
MONM 0.409 0.261 0.081
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Plot of Some Estimators
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Simulation #1: An 1deal situation:
X, ~N(6,.0%),6,~N(0.1), 07 ~ Unif(0.1,1) [observe X,.07]
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X, ~N(6,07),6,~N(2,0.1) or N(0,0.5), 07 ~0.1 0r 0.5

Simulation #5: A two-groups situation
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Summary

* Possibly heteroscedastic model
[Normal, or approx. normal, variances known or estimable.]

e Consider a family of estimators, 6.
[Maybe generated from a hierarchical Bayes structure. ]

* Write the SURE estimate of risk for fixed A.
* Minimize this over A at observed X.

e Estimator has desirable asymptotic properties [for all the

families we consider], and

* Estimator performs well in practical examples and
simulations
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