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(Sparse) Signal recovery problem

signal or

population

length N

k important

features

x = yΦ

measurements

or tests:

length m

Under-determined linear system: Φx = y

Given Φ and y , recover information about x



Two main examples: group testing and compressed sensing

x
Φ

= y

Group testing
Φ binary = pooling design
x binary, 1 =⇒ defective, 0 =⇒ acceptable
OUTPUT: defective set
success = number items found
Arithmetic: OR



Two main examples: group testing and compressed sensing

Φ x = y

Compressed sensing
Φ = measurement matrix
x signal, sparse/compressible
OUTPUT: x̂ good approximation to x
success = ‖x − x̂‖2 versus ‖x − xk‖2

Arithmetic: R or C

Head

Tail

k N

xk

x− xk



Design problems: matrices and algorithms

Design Φ with m < N rows and recovery algorithm s.t.

‖x − x̂‖2 ≤ C‖x − xk‖2.

• Adversarial or “for all” recover all x that satisfy a geometric
constraint:

tail of x is really compressible [Candes, et al.’04, Donoho ’04]

‖x − xk‖1 ≤
√

k‖x − xk‖2

block sparse/compressible [Eldar, et al.’09]

sparsity patterns connected chain in binary tree
i.e., model sparse/compressible [Baraniuk, et al.’09]

• Probabilistic or “for each”: recover all x that satisfy a
statistical constraint

fixed signal, recover whp over construction of Φ [GGIKMS’01]

uniform distribution over k-sparse signals
i.e., random signal model [Calderbank, et al.’08, Cevher, et al. ’08, Sapiro, et

al.’11]



Extremal models: pros and cons

• Adversarial
places minimal assumptions on signal =⇒ widely applicable
positive results hard to come by
unlikely that natural process is worst-case
which geometric model?

• Probabilistic
positive results easier to come by
not as applicable
debatable if natural process is oblivious to Φ or follow simple,
fully specified random process
which random process?



We need a middle ground: Compromise!

Feedback: never just measure, reconstruct once, and done

Future signals depend on measurements of current signals

Benign dependency: store inventory

Adversarial dependency: radar detection of adversary and
evasive action



We need a middle ground: lower bounds and separations?

Adversarial

Oblivious

x = y!
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Example: error-correcting codes

0 1 1 1 0 001 1 1

encode 
message m

channel

received
codeword

message m ∈M, over alphabet Σ

encode with codebook C ⊂ Σn

rate = log |M|
n log |Σ|



Example: error-correcting codes extremal examples

0 1 1 1 0 001 1 10 1 1 1 0 001 1 1

Flip bits iid at random, 
independent of codeword,
Expected number of errors = k

Change k bits

• Shannon: channel is oblivious to message or codeword

can prove existence of capacity-achieving codes

rate > 0 when ρ = 1/2 random errors

• Hamming: adversarial process

imposes strict conditions on codebook: distinct codewords
must differ in at least a fraction of 2ρ positions for ρ fraction
errors

rate = 0 when ρ > 1/4



ECC: middle ground

0 1 1 1 0 001 1 1

Dick Lipton

Adam Smith

Venkat Guruswami

Madhu Sudan

Silvio Micali

change ≤ k bits, restrict computation or information about
codeword

• probabilistic polynomial time: practical but not an actual
limitation

• logspace: “benign” processes only with small memory



Mallory: Adversarial model

• Binary symmetric channel: Entries 1 with prob. k/N and 0
with prob. (N − k)/N.

• Oblivious: Mallory generates x with no information about Φ
• Information-theoretically bounded: Mallory generates x

with bounded mutual information with Φ.

Algorithm M is information-theoretically bounded if
M(x) = M2(M1(x)) where the output of M1 consists of at
most O(log(|x |)).

• Streaming log-space: Mallory streams over rows of Φ, has
only logspace to store information and to produce vector x .

• Adversarial: Mallory is fully malicious.



Example: Randomized algorithms against adversaries

String of length N, N/2 a’s and N/2 b’s

Randomized algorithm to produce position of a in vector:

0. Choose k positions at random
1. If a is in (at least) one of m positions, return position

(Success)
else, return ∅ (Fail)

Probability of success = 1− (1/2)m on any fixed string

If Mallory knows which m positions (i.e, the random string
used by the algorithm), she puts b’s in those slots and Fail!

A(x , r) = randomized algorithm, succeeds with prob. 1− ε
x ∈ {0, 1}N input string and r ∈ {0, 1}m random string



Results

Combinatorial group testing

Mallory Num. Measurements Reference

Adversarial Ω(k2 log(N/k)/ log(k)) [Furedi,
and more]

Information-Theoretically bounded (logspace) O(k log(N)) new

Logspace streaming (one pass over the rows) Ω(k2/ log k) new

Deterministic O(log k log N) space Ω(k2/ log k) new
Oblivious O(k log(N)) new
Binary symmetric channel Ω(k log(N/k)),

O(k log(N))
new

Sparse signal recovery

Mallory Num. Measurements Reference

Adversarial Ω(N) [CDD’09]

Adversarial, but restricted so that ‖x − xk‖1 ≤
√

k‖x − xk‖2 O(k log(N/k) [CRT’06,
Donoho’06]

Information-Theoretically bounded (logspace) O(k log(N/k)) new
Logspace streaming (one pass over the rows) O(k log(N/k)) new
Oblivious O(k log(N/k)) [GLPS’10]



Sketch of results for CS

Intuition: geometry of null space of Φ

Info.-theory bounded adversary: judicious use of simple
lemma and existing algorithms and matrix constructions
(Gaussian, Bernoulli, and hashing)

Streaming adversary: communication complexity arguments



Intuition: 2k measurements for exact k-sparse signals

x
x + null(Φ)

Σ1

Example: Φ is 2× 3 matrix

m = 2, N = 3, k = 1

dim(null(Φ)) = 1

dim(Σ1) = 1

For unique solution to Φx = y ,

x exactly 1-sparse

x + null(Φ) ∩ Σ1 = {x}
⇐⇒ null(Φ) ∩ (−x + Σ1) = 0

⇐⇒ null(Φ) ∩ Σ2k = 0



Intuition: null-space condition [CDD’09]

x′

Σ1 + B2

x + null(Φ) + B2

x′



Lemma: randomized algorithms and Mallory

Lemma

A(x , r) randomized algorithm with success probability 1− ε.
Let ` < N (space assigned to Mallory–runs M(r)).

Fix 0 < α < 1.

For any such Mallory, A(M(r), r) succeeds with probability at
least

min
{

1− α, 1− `

log(α/ε)

}

over the choice of r .



Conclusions

For CS: same (small) number of measurements against
adversaries as for oblivious with `2/`2 error guarantees

For CGT: more interesting adversaries and different numbers
of measurements

Good compromise between extremes

Alternative to statistical or geometric models

Recognition of measure + reconstruct feedback

(as opposed to measure same signal repeatedly or measure
several simultaneously)


