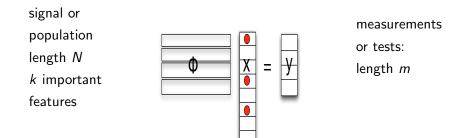
Recovering Simple Signals

Anna C. Gilbert

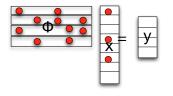
Department of Mathematics University of Michigan

Joint work with B. Hemenway (U. Mich), A. Rudra (Buffalo), M. J. Strauss (U. Mich), and M. Wootters (U. Mich)

(Sparse) Signal recovery problem

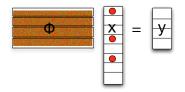


Under-determined linear system: $\Phi x = y$ Given Φ and y, recover information about x Two main examples: group testing and compressed sensing



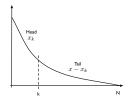
Group testing

 Φ binary = pooling design x binary, 1 \implies defective, 0 \implies acceptable OUTPUT: defective set success = number items found Arithmetic: OR Two main examples: group testing and compressed sensing



Compressed sensing

$$\begin{split} \Phi &= \text{measurement matrix} \\ x \text{ signal, sparse/compressible} \\ \text{OUTPUT: } \widehat{x} \text{ good approximation to } x \\ \text{success} &= \|x - \widehat{x}\|_2 \text{ versus } \|x - x_k\|_2 \\ \text{Arithmetic: } \mathbb{R} \text{ or } \mathbb{C} \end{split}$$



Design problems: matrices and algorithms

Design Φ with m < N rows and recovery algorithm s.t.

$$\|x-\widehat{x}\|_2 \leq C\|x-x_k\|_2.$$

• Adversarial or "for all" recover all x that satisfy a geometric constraint:

tail of x is really compressible [Candes, et al.'04, Donoho '04]

$$||x - x_k||_1 \le \sqrt{k} ||x - x_k||_2$$

block sparse/compressible [Eldar, et al.'09] sparsity patterns connected chain in binary tree i.e., model sparse/compressible [Baraniuk, et al.'09]

• **Probabilistic or "for each"**: recover all *x* that satisfy a statistical constraint

fixed signal, recover whp over construction of Φ [GGIKMS'01] uniform distribution over *k*-sparse signals i.e., random signal model [Calderbank, et al.'08, Cevher, et al. '08, Sapiro, et al.'11]

Extremal models: pros and cons

Adversarial

places minimal assumptions on signal \implies widely applicable positive results hard to come by unlikely that natural process is worst-case which geometric model?

• Probabilistic

positive results easier to come by not as applicable debatable if natural process is oblivious to Φ or follow simple, fully specified random process which random process?

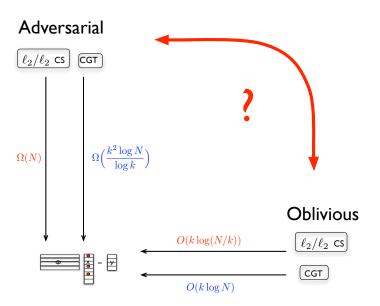
We need a middle ground: Compromise!

Feedback: never just measure, reconstruct once, and done

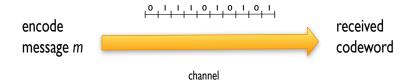
Future signals depend on measurements of current signals Benign dependency: store inventory

Adversarial dependency: radar detection of adversary and evasive action

We need a middle ground: lower bounds and separations?

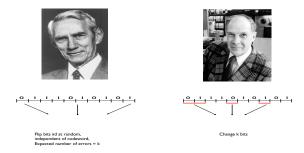


Example: error-correcting codes



message
$$m \in \mathcal{M}$$
, over alphabet Σ
encode with codebook $\mathcal{C} \subset \Sigma^n$
rate $= \frac{\log |\mathcal{M}|}{n \log |\Sigma|}$

Example: error-correcting codes extremal examples



- Shannon: channel is oblivious to message or codeword can prove existence of capacity-achieving codes rate > 0 when $\rho = 1/2$ random errors
- Hamming: adversarial process imposes strict conditions on codebook: distinct codewords must differ in at least a fraction of 2ρ positions for ρ fraction errors

rate = 0 when ho > 1/4

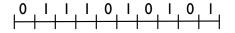
ECC: middle ground

Adam Smith

Venkat Guruswami

Madhu Sudan

Silvio Micali



Dick Liptor

change $\leq k$ bits, **restrict** computation or information about codeword

- probabilistic polynomial time: practical but not an actual limitation
- LOGSPACE: "benign" processes only with small memory

Mallory: Adversarial model

- Binary symmetric channel: Entries 1 with prob. k/N and 0 with prob. (N − k)/N.
- **Oblivious:** Mallory generates x with no information about Φ
- Information-theoretically bounded: Mallory generates x with bounded mutual information with Φ.
 Algorithm M is information-theoretically bounded if

 $M(x) = M_2(M_1(x))$ where the output of M_1 consists of at most $O(\log(|x|))$.

- **Streaming log-space:** Mallory streams over *rows* of Φ, has only LOGSPACE to store information and to produce vector *x*.
- Adversarial: Mallory is fully malicious.

Example: Randomized algorithms against adversaries

String of length N, N/2 a's and N/2 b's

Randomized algorithm to produce position of *a* in vector:

- 0. Choose k positions at random
- If a is in (at least) one of m positions, return position (Success) else, return Ø (Fail)

Probability of success $= 1 - (1/2)^m$ on any *fixed* string

If Mallory *knows* which m positions (i.e, the random string used by the algorithm), she puts b's in those slots and Fail!

A(x, r) = randomized algorithm, succeeds with prob. $1 - \epsilon$ $x \in \{0, 1\}^N$ input string and $r \in \{0, 1\}^m$ random string

Results

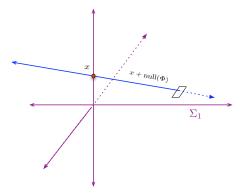
Combinatorial group testing		
Mallory	Num. Measurements	Reference
Adversarial	$\Omega(k^2 \log(N/k) / \log(k))$	[Furedi, and more]
Information-Theoretically bounded (logspace)	$O(k \log(N))$	new
Logspace streaming (one pass over the rows)	$\Omega(k^2/\log k)$	new
Deterministic O(log k log N) space	$\Omega(k^2 / \log k)$	new
Oblivious	$O(k \log(N))$	new
Binary symmetric channel	$\Omega(k \log(N/k)), \\ O(k \log(N))$	new
Sparse signal recovery		
Mallory	Num. Measurements	Reference
Adversarial	Ω(<i>N</i>)	[CDD'09]
Adversarial, but restricted so that $ x - x_k _1 \le \sqrt{k} x - x_k _2$	$O(k \log(N/k))$	[CRT'06, Donoho'06]
Information-Theoretically bounded (logspace)	$O(k \log(N/k))$	new
Logspace streaming (one pass over the rows)	$O(k \log(N/k))$	new
Oblivious	$O(k \log(N/k))$	[GLPS'10]

Intuition: geometry of null space of Φ

Info.-theory bounded adversary: judicious use of simple lemma and existing algorithms and matrix constructions (Gaussian, Bernoulli, and hashing)

Streaming adversary: communication complexity arguments

Intuition: 2k measurements for exact k-sparse signals



Example: Φ is 2 × 3 matrix m = 2, N = 3, k = 1dim(null(Φ)) = 1 dim(Σ_1) = 1

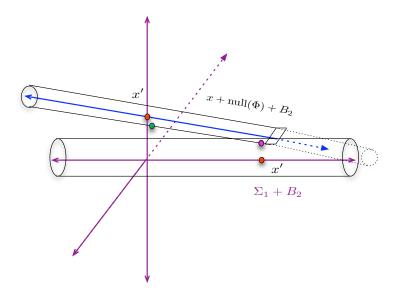
For unique solution to $\Phi x = y$, x exactly 1-sparse

$$x + \operatorname{null}(\Phi) \cap \Sigma_1 = \{x\}$$

$$\iff \operatorname{null}(\Phi) \cap (-x + \Sigma_1) = 0$$

$$\iff \operatorname{null}(\Phi) \cap \Sigma_{2k} = 0$$

Intuition: null-space condition [CDD'09]



Lemma: randomized algorithms and Mallory

Lemma

A(x, r) randomized algorithm with success probability $1 - \epsilon$. Let $\ell < N$ (space assigned to Mallory–runs M(r)). Fix $0 < \alpha < 1$.

For any such Mallory, A(M(r), r) succeeds with probability at least

$$\min\Big\{1-\alpha,1-\frac{\ell}{\log(\alpha/\epsilon)}\Big\}$$

over the choice of r.

Conclusions

For CS: same (small) number of measurements against adversaries as for oblivious with ℓ_2/ℓ_2 error guarantees

For CGT: more interesting adversaries and different numbers of measurements

Good compromise between extremes

Alternative to statistical or geometric models

Recognition of measure + reconstruct feedback (as opposed to measure same signal *repeatedly* or measure several *simultaneously*)