## Recovering Simple Signals

## Anna C. Gilbert

Department of Mathematics
University of Michigan

Joint work with B. Hemenway (U. Mich), A. Rudra (Buffalo), M. J. Strauss (U. Mich), and M. Wootters (U. Mich)


## (Sparse) Signal recovery problem

signal or
population
length $N$
$k$ important
features

measurements or tests: length $m$

Under-determined linear system: $\Phi_{x}=y$
Given $\Phi$ and $y$, recover information about $x$

## Two main examples: group testing and compressed sensing



Group testing
$\Phi$ binary $=$ pooling design
$x$ binary, $1 \Longrightarrow$ defective, $0 \Longrightarrow$ acceptable OUTPUT: defective set
success $=$ number items found
Arithmetic: OR

## Two main examples: group testing and compressed sensing



Compressed sensing
$\Phi=$ measurement matrix $x$ signal, sparse/compressible OUTPUT: $\widehat{x}$ good approximation to $x$ success $=\|x-\widehat{x}\|_{2}$ versus $\left\|x-x_{k}\right\|_{2}$ Arithmetic: $\mathbb{R}$ or $\mathbb{C}$


## Design problems: matrices and algorithms

Design $\Phi$ with $m<N$ rows and recovery algorithm s.t.

$$
\|x-\widehat{x}\|_{2} \leq C\left\|x-x_{k}\right\|_{2}
$$

- Adversarial or "for all" recover all $x$ that satisfy a geometric constraint:
tail of $x$ is really compressible [Candes, et al.'04, Donoho '04]

$$
\left\|x-x_{k}\right\|_{1} \leq \sqrt{k}\left\|x-x_{k}\right\|_{2}
$$

block sparse/compressible [Eldar, et al.'09] sparsity patterns connected chain in binary tree i.e., model sparse/compressible [Baraniuk, et al.'09]

- Probabilistic or "for each": recover all $x$ that satisfy a statistical constraint
fixed signal, recover whp over construction of $\Phi$ [GGIKMs'01] uniform distribution over $k$-sparse signals
i.e., random signal model [Calderbank, et al.' ${ }^{\prime} 08$, Cevher, et al. '08, Sapiro, et al.'11]


## Extremal models: pros and cons

- Adversarial
places minimal assumptions on signal $\Longrightarrow$ widely applicable positive results hard to come by
unlikely that natural process is worst-case which geometric model?
- Probabilistic
positive results easier to come by not as applicable debatable if natural process is oblivious to $\Phi$ or follow simple, fully specified random process
which random process?


## We need a middle ground: Compromise!



Feedback: never just measure, reconstruct once, and done

Future signals depend on measurements of current signals Benign dependency: store inventory

Adversarial dependency: radar detection of adversary and evasive action

We need a middle ground: lower bounds and separations?

Adversarial
$\ell_{2} / \ell_{2} \mathrm{CS}$ CGT

$?$

Oblivious


## Example: error-correcting codes

encode message $m$

message $m \in \mathcal{M}$, over alphabet $\Sigma$
encode with codebook $\mathcal{C} \subset \Sigma^{n}$
rate $=\frac{\log |\mathcal{M}|}{n \log |\Sigma|}$

## Example: error-correcting codes extremal examples



Flip bits iid at random,
independent of codeword.
Expected number of errors $=k$


Change k bits

- Shannon: channel is oblivious to message or codeword can prove existence of capacity-achieving codes rate $>0$ when $\rho=1 / 2$ random errors
- Hamming: adversarial process imposes strict conditions on codebook: distinct codewords must differ in at least a fraction of $2 \rho$ positions for $\rho$ fraction errors rate $=0$ when $\rho>1 / 4$


## ECC: middle ground


change $\leq k$ bits, restrict computation or information about codeword

- probabilistic polynomial time: practical but not an actual limitation
- LOGSPACE: "benign" processes only with small memory


## Mallory: Adversarial model



- Binary symmetric channel: Entries 1 with prob. $k / N$ and 0 with prob. $(N-k) / N$.
- Oblivious: Mallory generates $x$ with no information about $\Phi$
- Information-theoretically bounded: Mallory generates $x$ with bounded mutual information with $\Phi$.
Algorithm $M$ is information-theoretically bounded if $M(x)=M_{2}\left(M_{1}(x)\right)$ where the output of $M_{1}$ consists of at most $O(\log (|x|))$.
- Streaming log-space: Mallory streams over rows of $\Phi$, has only LOGSPACE to store information and to produce vector $x$.
- Adversarial: Mallory is fully malicious.


## Example: Randomized algorithms against adversaries

String of length $N, N / 2$ a's and $N / 2$ b's
Randomized algorithm to produce position of $a$ in vector:
0 . Choose $k$ positions at random

1. If $a$ is in (at least) one of $m$ positions, return position (Success)
else, return $\emptyset$ (Fail)
Probability of success $=1-(1 / 2)^{m}$ on any fixed string

If Mallory knows which $m$ positions (i.e, the random string used by the algorithm), she puts b's in those slots and Fail!
$A(x, r)=$ randomized algorithm, succeeds with prob. $1-\epsilon$
$x \in\{0,1\}^{N}$ input string and $r \in\{0,1\}^{m}$ random string

## Results

| Combinatorial group testing |  |  |
| :--- | :--- | :--- |
| Mallory | Num. Measurements | Reference |
| Adversarial | $\Omega\left(k^{2} \log (N / k) / \log (k)\right)$ | [Furedi, <br> and more] |
| Information-Theoretically bounded (logspace) | $O(k \log (N))$ | new |
| Logspace streaming (one pass over the rows) | $\Omega\left(k^{2} / \log k\right)$ | new |
| Deterministic $O(\log k \log N)$ space | $\Omega\left(k^{2} / \log k\right)$ | new |
| Oblivious | $O(k \log (N))$ | new |
| Binary symmetric channel | $\Omega(k \log (N / k))$, | new |
| Sparse signal recovery | $O(k \log (N))$ |  |
| Mallory |  | Reference |
| Adversarial | $\Omega \operatorname{Measurements}$ |  |
| Adversarial, but restricted so that $\left\\|x-x_{k}\right\\| 1 \leq \sqrt{k}\left\\|x-x_{k}\right\\|_{2}$ | $O(k \log (N / k)$ | [CDD'09] |
| Information-Theoretically bounded (logspace) | $O(k \log (N / k))$ | [CRT'06, |
| Logspace streaming (one pass over the rows) | $O(k \log (N / k))$ | Donoho'06] |
| Oblivious | $O(k \log (N / k))$ | new |

## Sketch of results for CS

Intuition: geometry of null space of $\Phi$

Info.-theory bounded adversary: judicious use of simple lemma and existing algorithms and matrix constructions (Gaussian, Bernoulli, and hashing)

Streaming adversary: communication complexity arguments

## Intuition: $2 k$ measurements for exact $k$-sparse signals



Example: $\Phi$ is $2 \times 3$ matrix<br>$m=2, N=3, k=1$<br>$\operatorname{dim}(\operatorname{null}(\Phi))=1$<br>$\operatorname{dim}\left(\Sigma_{1}\right)=1$

For unique solution to $\Phi x=y$, x exactly 1 -sparse
$x+\operatorname{null}(\Phi) \cap \Sigma_{1}=\{x\}$
$\Longleftrightarrow \operatorname{null}(\Phi) \cap\left(-x+\Sigma_{1}\right)=0$
$\Longleftrightarrow \operatorname{null}(\Phi) \cap \Sigma_{2 k}=0$

## Intuition: null-space condition [CDD'og]



## Lemma: randomized algorithms and Mallory

## Lemma

$A(x, r)$ randomized algorithm with success probability $1-\epsilon$.
Let $\ell<N$ (space assigned to Mallory-runs $M(r)$ ).
Fix $0<\alpha<1$.
For any such Mallory, $A(M(r), r)$ succeeds with probability at least

$$
\min \left\{1-\alpha, 1-\frac{\ell}{\log (\alpha / \epsilon)}\right\}
$$

over the choice of $r$.

## Conclusions

For CS: same (small) number of measurements against adversaries as for oblivious with $\ell_{2} / \ell_{2}$ error guarantees

For CGT: more interesting adversaries and different numbers of measurements

Good compromise between extremes

Alternative to statistical or geometric models

Recognition of measure + reconstruct feedback (as opposed to measure same signal repeatedly or measure several simultaneously)

