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Motivating Problem: Cryo-Electron Microscopy
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» Projection images Pi(x,y) = ffooo d(xRY + yR? + zR3) dz + “noise”.
» ¢ :R3— R is the electric potential of the molecule.
» Cryo-EM problem: Find ¢ and Ry,..., R, given P1,..., P,.
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Toy Example
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E. coli 50S ribosomal subunit: sample images
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Class Averaging in Cryo-EM: Improve SNR
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Current clustering method (Penczek, Zhu, Frank 1996)

» Projection images P, P>, ..., P, with unknown rotations
Ri,R>,....R, € 50(3)
» Rotationally Invariant Distances (RID)
drip(i,j) = min ||P; — OP;
riD (7)) 0€50(2) | il
» Cluster the images using K-means.

> Images are not centered; also possible to include translations and to
optimize over the special Euclidean group.

» Problem with this approach: outliers.

» At low SNR images with completely different viewing directions may
have relatively small dgjp (noise aligns well, instead of underlying
signal).
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Outliers: Small World Graph on S?
» Define graph G = (V,E) by {i,j} € E < dgrip(i,j) <e.
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» Optimal rotation angles

Oj = argmin ||P; — OF;||, i,j=1,...
0€50(2)

» Triplet consistency relation — good triangles
OUOJkOk,‘ ~ Id.

» How to use information of optimal rotations in a systematic way?
Vector Diffusion Maps
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Vector Diffusion Maps: Setup

In VDM, the relationships between data points (e.g., cryo-EM images) are
represented as a weighted graph, where the weights w;; describing affinities
between data points are accompanied by linear orthogonal transformations
Oj.
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Manifold Learning: Point cloud in RP

> X1,X0,...,Xp € RP,
» Manifold assumption: xi,...,x, € M9, with d < p.
» Local Principal Component Analysis (PCA) gives an approximate

orthonormal basis O; for the tangent space T, M.
O; is a p X d matrix with orthonormal columns: OiTO,- = lyxd.
Alignment: O; = argminpco(q) |0 — 0. Oj||us

vy

(computed through the singular value decomposition of O,-TOJ-).
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Parallel Transport

» O;; approximates the parallel transport operator
Py x; o TxM — Ty M
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Vector diffusion mapping: S and D

» Symmetric nd X nd matrix S:

e W,JO,J (i,j) € E,
S(.J) = { Ouxd  (i,J) ¢ E.

n x n blocks, each of which is of size d x d.

» Diagonal matrix D of the same size, where the diagonal d x d blocks
are scalar matrices with the weighted degrees:

D(i, i) = deg(i)lyxad,
and

deg(i)= > wy

J:(iJ)eE
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D~1S as an averaging operator for vector fields

» The matrix D715 can be applied to vectors v of length nd, which we
regard as n vectors of length d, such that v(i) is a vector in R
viewed as a vector in T,.M. The matrix D~1S is an averaging
operator for vector fields, since

(D71Sv)(i) =

Z W,JO,J V(j)

deg(i) Jj:(ij)EE

This implies that the operator D™1S transport vectors from the
tangent spaces T, M (that are nearby to Ty, M) to T,;,M and then
averages the transported vectors in T, M.
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Affinity between nodes based on consistency of
transformations

> In the VDM framework, we define the affinity between i and j by
considering all paths of length t connecting them, but instead of just
summing the weights of all paths, we sum the transformations.

» Every path from j to i may result in a different transformation (like
parallel transport due to curvature).

» When adding transformations of different paths, cancelations may
happen.

» We define the affinity between / and j as the consistency between
these transformations.

» D715 is similar to the symmetric matrix S

S=DY25p~1/2
» We define the affinity between / and j as

1527, ) s = degE ;H( P ) s
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Embedding into a Hilbert Space

> Since S is symmetric, it has a complete set of eigenvectors {v;}79,
and eigenvalues {\;}79, (ordered as [A1] > A2 > ... > [Audl).
» Spectral decompositions of S and 52t

nd nd
5(i,0) =D avi(ii()T, and 5%(i,j) = Awilivi()T,
I=1 =1

where vi(i) € RY for i =1,...,nand I =1,...,nd.
» The HS norm of S%t(i,j) is calculated using the trace:
nd

13240 = D AP (), v () (), v )

l,r=1

» The affinity \|§2t(i,j)||%_,S = (V¢(i), V&(j)) is an inner product for the
finite dimensional Hilbert space R(") via the mapping V;:

Ve i (WA, v ()19,
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Vector Diffusion Distance

» The vector diffusion mapping is defined as

. . . nd
Viii— (()\/)\,)t(v,(/), Vr(l)>)I7r:1.
» The vector diffusion distance between nodes / and j is denoted
dypm,¢(i,j) and is defined as

dgpm,e(7 1) = (Va(i), Ve(D) + (Ve(), Ve()) — 2(Vi(1), Ve ()))-
» Other normalizations of the matrix S are possible and lead to slightly
different embeddings and distances (similar to diffusion maps).
» The matrices | — S and [ + S are positive semidefinite, because

v(i) | wi9v()
Vdeg(i)  +/deg())
for any v € R™. Therefore, \; € [~1,1]. As a result, the vector

diffusion mapping and distances can be well approximated by using
only the few largest eigenvalues and their corresponding eigenvectors.

vi(I £ D727 )y = H°

2
l Z 0,
(iJ)eE
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Application to the class averaging problem in Cryo-EM
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(a) Neighbors are identified using drip ~ (b) Neighbors are identified using dvpm,¢=2

Figure: SNR=1/64: Histogram of the angles (x-axis, in degrees) between the
viewing directions of each image (out of 40000) and it 40 neighboring images.
Left: neighbors are identified using the original rotationally invariant distances
drip. Right: neighbors are post identified using vector diffusion distances.
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Convergence Theorem to the Connection-Laplacian

Let ¢ : M < RP be a smooth d-dim closed Riemannian manifold
embedded in RP, with metric g induced from the canonical metric on RP”,
and the data set {x;}i=1, ., is independently uniformly distributed over
M. Let K € C?(R") be a positive kernel function decaying exponentially,
that is, there exist T > 0 and C > 0 such that K(t) < Ce"* when t > T.
For e > 0, let K. (xi,x) = K (M) Then, for X € C3(TM)

and for all x; almost surely we have

o L[Sk 0 ) m
21"7:1 K6 (X,', XJ) 2dm0

({1 V2X (x7), e,>)7:1 g

e—~0n—o0 €

where V2 is the connection Laplacian, X; = ((t,X(x;), €))%, € R? for all
i, {el(xi)}i=1,...4 is an orthonormal basis of ¢, T, M,

mp = Jpa |x|I"K(||x]|)dx, and Oj; is the optimal orthogonal transformation
determined by the algorithm in the alignment step.
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Example: Connection-Laplacian for S¢ embedded in R+!

The connection-Laplacian commutes with rotations and the eigenvalues
and eigen-vector-fields are calculated using representation theory:

52:6,10,14,....
5%:4,6,9,16,16,. ...
§%:5,10,14,....
S°:6,15,20,....

Figure: Bar plots of the largest 30 eigenvalues of D~1S for n = 8000 points
uniformly distributed over spheres of different dimensions.
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More applications of VDM: Orientability from a point cloud

Encode the information about reflections in a symmetric n x n matrix Z

with entries
7. det Oj (i,j) € E,
v 0 (i,J) ¢ E.
That is, Zjj = 1 if no reflection is needed, Z;; = —1 if a reflection is needed,

and Z;; = 0 if the points are not nearby. Normalize Z by the node degrees.

(a) S? (b) Klein bottle (c) RP?

Figure: Histogram of the values of the top eigenvector of D~1Z.
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Orientable Double Covering

Embedding obtained using the eigenvectors of the (normalized) matrix

2 72]-(2 ez

Figure: Left: the orientable double covering of RP(2), which is S52: Middle: the
orientable double covering of the Klein bottle, which is T2 Right: the orientable
double covering of the Mobius strip, which is a cylinder.
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Ongoing Research in cryo-EM

» Molecules with symmetries
» Heterogeneity problem

» Signal/Image processing
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Summary and Outlook

» VDM is a generalization of diffusion maps: from functions to vector
fields

» A way to globally connect local PCAs.
» Vector diffusion distance: a new metric for data points

» Noise robustness: random matrix theory
(noise model — orthogonal transformations average to 0).

» Other higher order Laplacians from point clouds (e.g., the Hodge
Laplacian).

» Revealing the topology of the data (e.g., orientability).

» Diffusion on orbit spaces M/G.

» More applications
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