#### Vector Diffusion Maps and the Connection Laplacian

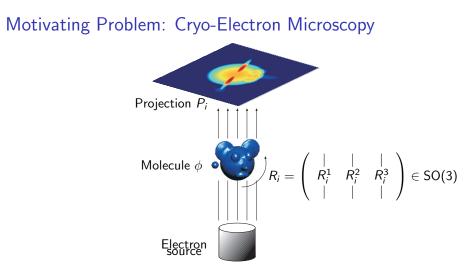
Amit Singer

#### Princeton University, Department of Mathematics and PACM

#### Duke Workshop on Sensing and Analysis of High-Dimensional Data July 26, 2011

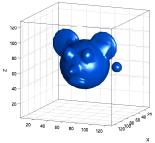
Amit Singer (Princeton University)

July 2011 1 / 24

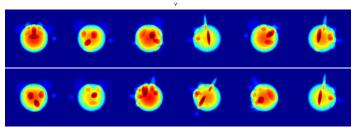


- Projection images  $P_i(x, y) = \int_{-\infty}^{\infty} \phi(xR_i^1 + yR_i^2 + zR_i^3) dz +$  "noise".
- $\blacktriangleright \ \phi: \mathbb{R}^3 \mapsto \mathbb{R}$  is the electric potential of the molecule.
- Cryo-EM problem: Find  $\phi$  and  $R_1, \ldots, R_n$  given  $P_1, \ldots, P_n$ .

#### Toy Example





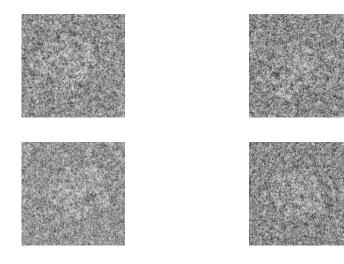


Amit Singer (Princeton University)

3 July 2011 3 / 24

イロト イポト イヨト イヨト

#### E. coli 50S ribosomal subunit: sample images

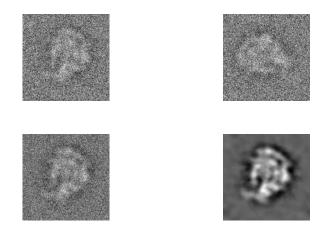


Amit Singer (Princeton University)

July 2011 4 / 24

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Class Averaging in Cryo-EM: Improve SNR



#### Current clustering method (Penczek, Zhu, Frank 1996)

- ▶ Projection images  $P_1, P_2, ..., P_n$  with unknown rotations  $R_1, R_2, ..., R_n \in SO(3)$
- Rotationally Invariant Distances (RID)

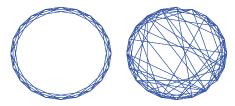
$$d_{RID}(i,j) = \min_{O \in SO(2)} \|P_i - OP_j\|$$

- Cluster the images using K-means.
- Images are not centered; also possible to include translations and to optimize over the special Euclidean group.
- Problem with this approach: outliers.
- At low SNR images with completely different viewing directions may have relatively small d<sub>RID</sub> (noise aligns well, instead of underlying signal).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Outliers: Small World Graph on  $S^2$ 

▶ Define graph G = (V, E) by  $\{i, j\} \in E \iff d_{RID}(i, j) \le \varepsilon$ .



Optimal rotation angles

$$O_{ij} = \underset{O \in SO(2)}{\operatorname{argmin}} ||P_i - OP_j||, \quad i, j = 1, \dots, n.$$

Triplet consistency relation – good triangles

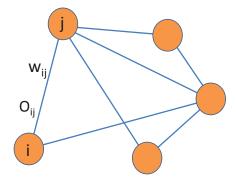
$$O_{ij}O_{jk}O_{ki}\approx Id.$$

 How to use information of optimal rotations in a systematic way? Vector Diffusion Maps

Amit Singer (Princeton University)

July 2011 7 / 24

#### Vector Diffusion Maps: Setup



In VDM, the relationships between data points (e.g., cryo-EM images) are represented as a weighted graph, where the weights  $w_{ij}$  describing affinities between data points are accompanied by linear orthogonal transformations  $O_{ij}$ .

#### Manifold Learning: Point cloud in $\mathbb{R}^p$

- ►  $x_1, x_2, \ldots, x_n \in \mathbb{R}^p$ .
- Manifold assumption:  $x_1, \ldots, x_n \in \mathcal{M}^d$ , with  $d \ll p$ .
- ► Local Principal Component Analysis (PCA) gives an approximate orthonormal basis O<sub>i</sub> for the tangent space T<sub>xi</sub>M.
- $O_i$  is a  $p \times d$  matrix with orthonormal columns:  $O_i^T O_i = I_{d \times d}$ .
- ► Alignment: O<sub>ij</sub> = argmin<sub>O∈O(d)</sub> ||O − O<sub>i</sub><sup>T</sup>O<sub>j</sub>||<sub>HS</sub> (computed through the singular value decomposition of O<sub>i</sub><sup>T</sup>O<sub>j</sub>).

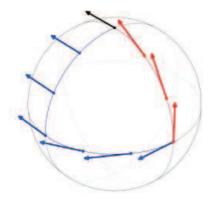


July 2011

9 / 24

#### Parallel Transport

#### • $O_{ij}$ approximates the parallel transport operator $P_{x_i,x_j}: T_{x_j}\mathcal{M} \to T_{x_i}\mathcal{M}$



Amit Singer (Princeton University)

▲ ■ ● ■ ● ○ ○ ○
 July 2011 10 / 24

・ロト ・聞ト ・ヨト ・ヨト

#### Vector diffusion mapping: S and D

Symmetric *nd* × *nd* matrix *S*:

$$S(i,j) = \begin{cases} w_{ij}O_{ij} & (i,j) \in E, \\ 0_{d \times d} & (i,j) \notin E. \end{cases}$$

 $n \times n$  blocks, each of which is of size  $d \times d$ .

Diagonal matrix D of the same size, where the diagonal d × d blocks are scalar matrices with the weighted degrees:

$$D(i,i) = \deg(i)I_{d\times d},$$

and

$$\deg(i) = \sum_{j:(i,j)\in E} w_{ij}$$

Amit Singer (Princeton University)

July 2011 11 / 24

イロト 不得下 イヨト イヨト 二日

#### $D^{-1}S$ as an averaging operator for vector fields

The matrix D<sup>-1</sup>S can be applied to vectors v of length nd, which we regard as n vectors of length d, such that v(i) is a vector in ℝ<sup>d</sup> viewed as a vector in T<sub>×i</sub>M. The matrix D<sup>-1</sup>S is an averaging operator for vector fields, since

$$(D^{-1}Sv)(i) = \frac{1}{\deg(i)}\sum_{j:(i,j)\in E} w_{ij}O_{ij}v(j).$$

This implies that the operator  $D^{-1}S$  transport vectors from the tangent spaces  $T_{x_j}\mathcal{M}$  (that are nearby to  $T_{x_i}\mathcal{M}$ ) to  $T_{x_i}\mathcal{M}$  and then averages the transported vectors in  $T_{x_i}\mathcal{M}$ .

Amit Singer (Princeton University)

July 2011 12 / 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

# Affinity between nodes based on consistency of transformations

- In the VDM framework, we define the affinity between i and j by considering all paths of length t connecting them, but instead of just summing the weights of all paths, we sum the transformations.
- Every path from j to i may result in a different transformation (like parallel transport due to curvature).
- When adding transformations of different paths, cancelations may happen.
- ▶ We define the affinity between *i* and *j* as the consistency between these transformations.
- $D^{-1}S$  is similar to the symmetric matrix  $\tilde{S}$

$$\tilde{S} = D^{-1/2} S D^{-1/2}$$

We define the affinity between i and j as

$$\|\tilde{S}^{2t}(i,j)\|_{HS}^2 = \frac{\deg(i)}{\deg(j)} \|(D^{-1}S)^{2t}(i,j)\|_{HS}^2.$$

Amit Singer (Princeton University)

July 2011 13 / 24

#### Embedding into a Hilbert Space

- Since Š̃ is symmetric, it has a complete set of eigenvectors {v<sub>l</sub>}<sup>nd</sup><sub>l=1</sub> and eigenvalues {λ<sub>i</sub>}<sup>nd</sup><sub>l=1</sub> (ordered as |λ<sub>1</sub>| ≥ |λ<sub>2</sub>| ≥ ... ≥ |λ<sub>nd</sub>|).
- Spectral decompositions of  $\tilde{S}$  and  $\tilde{S}^{2t}$ :

$$\tilde{S}(i,j) = \sum_{l=1}^{nd} \lambda_l v_l(i) v_l(j)^T, \quad \text{and} \quad \tilde{S}^{2t}(i,j) = \sum_{l=1}^{nd} \lambda_l^{2t} v_l(i) v_l(j)^T,$$

where  $v_l(i) \in \mathbb{R}^d$  for  $i = 1, \dots, n$  and  $l = 1, \dots, nd$ .

• The HS norm of  $\tilde{S}^{2t}(i,j)$  is calculated using the trace:

$$\|\tilde{S}^{2t}(i,j)\|_{HS}^2 = \sum_{l,r=1}^{nd} (\lambda_l \lambda_r)^{2t} \langle v_l(i), v_r(i) \rangle \langle v_l(j), v_r(j) \rangle.$$

► The affinity ||Š<sup>2t</sup>(i,j)||<sup>2</sup><sub>HS</sub> = ⟨V<sub>t</sub>(i), V<sub>t</sub>(j)⟩ is an inner product for the finite dimensional Hilbert space ℝ<sup>(nd)<sup>2</sup></sup> via the mapping V<sub>t</sub>:

$$V_t: i \mapsto \left( (\lambda_l \lambda_r)^t \langle v_l(i), v_r(i) \rangle \right)_{l,r=1}^{nd}.$$

Amit Singer (Princeton University)

July 2011 14 / 24

#### Vector Diffusion Distance

The vector diffusion mapping is defined as

$$V_t: i \mapsto \left( (\lambda_l \lambda_r)^t \langle v_l(i), v_r(i) \rangle \right)_{l,r=1}^{nd}.$$

► The vector diffusion distance between nodes i and j is denoted d<sub>VDM,t</sub>(i, j) and is defined as

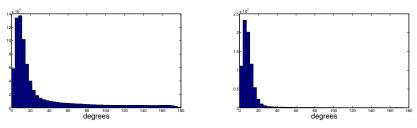
$$d^{2}_{\mathsf{VDM},t}(i,j) = \langle V_{t}(i), V_{t}(i) \rangle + \langle V_{t}(j), V_{t}(j) \rangle - 2 \langle V_{t}(i), V_{t}(j) \rangle.$$

- Other normalizations of the matrix S are possible and lead to slightly different embeddings and distances (similar to diffusion maps).
- The matrices  $I \tilde{S}$  and  $I + \tilde{S}$  are positive semidefinite, because

$$v^{T}(I\pm D^{-1/2}SD^{-1/2})v=\sum_{(i,j)\in E}\left\|rac{v(i)}{\sqrt{\deg(i)}}\pmrac{w_{ij}O_{ij}v(j)}{\sqrt{\deg(j)}}
ight\|^{2}\geq 0,$$

for any  $v \in \mathbb{R}^{nd}$ . Therefore,  $\lambda_I \in [-1, 1]$ . As a result, the vector diffusion mapping and distances can be well approximated by using only the few largest eigenvalues and their corresponding eigenvectors.

#### Application to the class averaging problem in Cryo-EM



(a) Neighbors are identified using  $d_{RID}$ 

(b) Neighbors are identified using  $d_{VDM,t=2}$ 

(日) (同) (三) (三)

Figure: SNR=1/64: Histogram of the angles (*x*-axis, in degrees) between the viewing directions of each image (out of 40000) and it 40 neighboring images. Left: neighbors are identified using the original rotationally invariant distances  $d_{\text{RID}}$ . Right: neighbors are post identified using vector diffusion distances.

Amit Singer (Princeton University)

July 2011 16 / 24

#### Convergence Theorem to the Connection-Laplacian

Let  $\iota : \mathcal{M} \hookrightarrow \mathbb{R}^p$  be a smooth *d*-dim closed Riemannian manifold embedded in  $\mathbb{R}^p$ , with metric *g* induced from the canonical metric on  $\mathbb{R}^p$ , and the data set  $\{x_i\}_{i=1,...,n}$  is independently uniformly distributed over  $\mathcal{M}$ . Let  $K \in C^2(\mathbb{R}^+)$  be a positive kernel function decaying exponentially, that is, there exist T > 0 and C > 0 such that  $K(t) \leq Ce^{-t}$  when t > T. For  $\epsilon > 0$ , let  $K_\epsilon(x_i, x_j) = K\left(\frac{\|\iota(x_i) - \iota(x_j)\|_{\mathbb{R}^p}}{\sqrt{\epsilon}}\right)$ . Then, for  $X \in C^3(T\mathcal{M})$ and for all  $x_i$  almost surely we have

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{\epsilon} \left[ \frac{\sum_{j=1}^{n} K_{\epsilon}(x_{i}, x_{j}) O_{ij} X_{j}}{\sum_{j=1}^{n} K_{\epsilon}(x_{i}, x_{j})} - X_{i} \right] = \frac{m_{2}}{2dm_{0}} \left( \langle \iota_{*} \nabla^{2} X(x_{i}), e_{i} \rangle \right)_{i=1}^{d},$$

where  $\nabla^2$  is the connection Laplacian,  $X_i \equiv (\langle \iota_* X(x_i), e_l \rangle)_{l=1}^d \in \mathbb{R}^d$  for all  $i, \{e_l(x_i)\}_{l=1,...,d}$  is an orthonormal basis of  $\iota_* T_{x_i} \mathcal{M}$ ,  $m_l = \int_{\mathbb{R}^d} ||x||^l \mathcal{K}(||x||) dx$ , and  $O_{ij}$  is the optimal orthogonal transformation determined by the algorithm in the alignment step.

Amit Singer (Princeton University)

#### Example: Connection-Laplacian for $S^d$ embedded in $\mathbb{R}^{d+1}$

The connection-Laplacian commutes with rotations and the eigenvalues and eigen-vector-fields are calculated using representation theory:

$$S^2$$
: 6, 10, 14, ....  
 $S^3$ : 4, 6, 9, 16, 16, ...  
 $S^4$ : 5, 10, 14, ....  
 $S^5$ : 6, 15, 20, ....

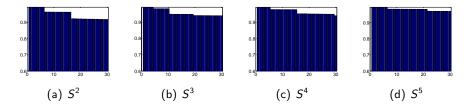


Figure: Bar plots of the largest 30 eigenvalues of  $D^{-1}S$  for n = 8000 points uniformly distributed over spheres of different dimensions.

#### Amit Singer (Princeton University)

July 2011 18 / 24

### More applications of VDM: Orientability from a point cloud

Encode the information about reflections in a symmetric  $n \times n$  matrix Z with entries

$$Z_{ij} = \begin{cases} \det O_{ij} & (i,j) \in E, \\ 0 & (i,j) \notin E. \end{cases}$$

That is,  $Z_{ij} = 1$  if no reflection is needed,  $Z_{ij} = -1$  if a reflection is needed, and  $Z_{ij} = 0$  if the points are not nearby. Normalize Z by the node degrees.

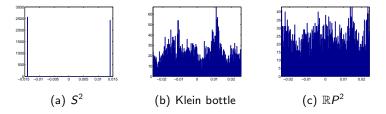


Figure: Histogram of the values of the top eigenvector of  $D^{-1}Z$ .

July 2011 19 / 24

イロト イポト イヨト イヨト

#### Orientable Double Covering

Embedding obtained using the eigenvectors of the (normalized) matrix

$$\left[\begin{array}{cc} Z & -Z \\ -Z & Z \end{array}\right] = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right) \otimes Z,$$



Figure: Left: the orientable double covering of  $\mathbb{R}P(2)$ , which is  $S^2$ ; Middle: the orientable double covering of the Klein bottle, which is  $T^2$ ; Right: the orientable double covering of the Möbius strip, which is a cylinder.

Amit Singer (Princeton University)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Ongoing Research in cryo-EM

- Molecules with symmetries
- Heterogeneity problem
- Signal/Image processing

イロト 不得 トイヨト イヨト 二日

#### Summary and Outlook

- VDM is a generalization of diffusion maps: from functions to vector fields
- A way to globally connect local PCAs.
- Vector diffusion distance: a new metric for data points
- Noise robustness: random matrix theory (noise model – orthogonal transformations average to 0).
- Other higher order Laplacians from point clouds (e.g., the Hodge Laplacian).
- Revealing the topology of the data (e.g., orientability).
- Diffusion on orbit spaces  $\mathcal{M}/G$ .
- More applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

#### References

- A. Singer, H.-T. Wu, "Vector diffusion maps and the connection Laplacian", submitted.
- A. Singer, H.-T. Wu, "Orientability and Diffusion Maps", Applied and Computational Harmonic Analysis, Applied and Computational Harmonic Analysis, **31** (1), pp. 44–58 (2011).
- A. Singer, Z. Zhao, Y. Shkolnisky, R. Hadani, "Viewing Angle Classification of Cryo-Electron Microscopy Images using Eigenvectors", SIAM Journal on Imaging Sciences, 4 (2), pp. 723–759 (2011).

## Thank You!

(日) (同) (三) (三)

July 2011

24 / 24

Acknowledgements:

Students:

- Hau-tieng Wu
- Zhizhen Zhao

#### **Collaborators:**

- Ronny Hadani (UT Austin)
- Yoel Shkolnisky (Tel Aviv University)
- Fred Sigworth (Yale Medical School)

Funding:

- NIH/NIGMS R01GM090200
- Sloan Research Foundation