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Motivating Problem: Cryo-Electron Microscopy

Projection Pi

Molecule φ

Electronsource

Ri =





| | |
R1
i R2

i R3
i

| | |



 ∈ SO(3)

◮ Projection images Pi (x , y) =
∫∞
−∞ φ(xR1

i + yR2
i + zR3

i ) dz + “noise”.

◮ φ : R3 7→ R is the electric potential of the molecule.
◮ Cryo-EM problem: Find φ and R1, . . . ,Rn given P1, . . . ,Pn.
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Toy Example
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E. coli 50S ribosomal subunit: sample images
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Class Averaging in Cryo-EM: Improve SNR
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Current clustering method (Penczek, Zhu, Frank 1996)

◮ Projection images P1,P2, . . . ,Pn with unknown rotations
R1,R2, . . . ,Rn ∈ SO(3)

◮ Rotationally Invariant Distances (RID)

dRID(i , j) = min
O∈SO(2)

‖Pi − OPj‖

◮ Cluster the images using K-means.

◮ Images are not centered; also possible to include translations and to
optimize over the special Euclidean group.

◮ Problem with this approach: outliers.

◮ At low SNR images with completely different viewing directions may
have relatively small dRID (noise aligns well, instead of underlying
signal).

Amit Singer (Princeton University) July 2011 6 / 24



Outliers: Small World Graph on S2

◮ Define graph G = (V ,E ) by {i , j} ∈ E ⇐⇒ dRID(i , j) ≤ ε.

◮ Optimal rotation angles

Oij = argmin
O∈SO(2)

‖Pi − OPj‖, i , j = 1, . . . , n.

◮ Triplet consistency relation – good triangles

OijOjkOki ≈ Id .

◮ How to use information of optimal rotations in a systematic way?
Vector Diffusion Maps
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Vector Diffusion Maps: Setup

wij

Oij

i

j

In VDM, the relationships between data points (e.g., cryo-EM images) are
represented as a weighted graph, where the weights wij describing affinities
between data points are accompanied by linear orthogonal transformations
Oij .
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Manifold Learning: Point cloud in R
p

◮ x1, x2, . . . , xn ∈ R
p.

◮ Manifold assumption: x1, . . . , xn ∈ Md , with d ≪ p.
◮ Local Principal Component Analysis (PCA) gives an approximate

orthonormal basis Oi for the tangent space TxiM.
◮ Oi is a p × d matrix with orthonormal columns: OT

i Oi = Id×d .
◮ Alignment: Oij = argminO∈O(d) ‖O − OT

i Oj‖HS

(computed through the singular value decomposition of OT
i Oj).
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Parallel Transport

◮ Oij approximates the parallel transport operator
Pxi ,xj : TxjM → TxiM
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Vector diffusion mapping: S and D

◮ Symmetric nd × nd matrix S :

S(i , j) =

{

wijOij (i , j) ∈ E ,
0d×d (i , j) /∈ E .

n × n blocks, each of which is of size d × d .

◮ Diagonal matrix D of the same size, where the diagonal d × d blocks
are scalar matrices with the weighted degrees:

D(i , i) = deg(i)Id×d ,

and
deg(i) =

∑

j :(i ,j)∈E
wij

Amit Singer (Princeton University) July 2011 11 / 24



D−1S as an averaging operator for vector fields

◮ The matrix D−1S can be applied to vectors v of length nd , which we
regard as n vectors of length d , such that v(i) is a vector in R

d

viewed as a vector in TxiM. The matrix D−1S is an averaging
operator for vector fields, since

(D−1Sv)(i) =
1

deg(i)

∑

j :(i ,j)∈E
wijOijv(j).

This implies that the operator D−1S transport vectors from the
tangent spaces TxjM (that are nearby to TxiM) to TxiM and then
averages the transported vectors in TxiM.

Amit Singer (Princeton University) July 2011 12 / 24



Affinity between nodes based on consistency of

transformations
◮ In the VDM framework, we define the affinity between i and j by

considering all paths of length t connecting them, but instead of just
summing the weights of all paths, we sum the transformations.

◮ Every path from j to i may result in a different transformation (like
parallel transport due to curvature).

◮ When adding transformations of different paths, cancelations may
happen.

◮ We define the affinity between i and j as the consistency between
these transformations.

◮ D−1S is similar to the symmetric matrix S̃

S̃ = D−1/2SD−1/2

◮ We define the affinity between i and j as

‖S̃2t(i , j)‖2HS =
deg(i)

deg(j)
‖(D−1S)2t(i , j)‖2HS .
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Embedding into a Hilbert Space
◮ Since S̃ is symmetric, it has a complete set of eigenvectors {vl}

nd
l=1

and eigenvalues {λi}
nd
l=1 (ordered as |λ1| ≥ |λ2| ≥ . . . ≥ |λnd |).

◮ Spectral decompositions of S̃ and S̃2t :

S̃(i , j) =
nd
∑

l=1

λlvl(i)vl (j)
T , and S̃2t(i , j) =

nd
∑

l=1

λ2t
l vl(i)vl (j)

T ,

where vl(i) ∈ R
d for i = 1, . . . , n and l = 1, . . . , nd .

◮ The HS norm of S̃2t(i , j) is calculated using the trace:

‖S̃2t(i , j)‖2HS =

nd
∑

l ,r=1

(λlλr )
2t〈vl (i), vr (i)〉〈vl (j), vr (j)〉.

◮ The affinity ‖S̃2t(i , j)‖2HS = 〈Vt(i),Vt(j)〉 is an inner product for the

finite dimensional Hilbert space R
(nd)2 via the mapping Vt :

Vt : i 7→
(

(λlλr )
t〈vl(i), vr (i)〉

)nd

l ,r=1
.
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Vector Diffusion Distance
◮ The vector diffusion mapping is defined as

Vt : i 7→
(

(λlλr )
t〈vl(i), vr (i)〉

)nd

l ,r=1
.

◮ The vector diffusion distance between nodes i and j is denoted
dVDM,t(i , j) and is defined as

d2
VDM,t(i , j) = 〈Vt(i),Vt(i)〉+ 〈Vt(j),Vt(j)〉 − 2〈Vt(i),Vt(j)〉.

◮ Other normalizations of the matrix S are possible and lead to slightly
different embeddings and distances (similar to diffusion maps).

◮ The matrices I − S̃ and I + S̃ are positive semidefinite, because

vT (I ± D−1/2SD−1/2)v =
∑

(i ,j)∈E

∥

∥

∥

∥

∥

v(i)
√

deg(i)
±

wijOijv(j)
√

deg(j)

∥

∥

∥

∥

∥

2

≥ 0,

for any v ∈ R
nd . Therefore, λl ∈ [−1, 1]. As a result, the vector

diffusion mapping and distances can be well approximated by using
only the few largest eigenvalues and their corresponding eigenvectors.

Amit Singer (Princeton University) July 2011 15 / 24



Application to the class averaging problem in Cryo-EM
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(a) Neighbors are identified using dRID
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(b) Neighbors are identified using dVDM,t=2

Figure: SNR=1/64: Histogram of the angles (x-axis, in degrees) between the
viewing directions of each image (out of 40000) and it 40 neighboring images.
Left: neighbors are identified using the original rotationally invariant distances
dRID. Right: neighbors are post identified using vector diffusion distances.
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Convergence Theorem to the Connection-Laplacian

Let ι : M →֒ R
p be a smooth d -dim closed Riemannian manifold

embedded in R
p, with metric g induced from the canonical metric on R

p,
and the data set {xi}i=1,...,n is independently uniformly distributed over
M. Let K ∈ C 2(R+) be a positive kernel function decaying exponentially,
that is, there exist T > 0 and C > 0 such that K (t) ≤ Ce−t when t > T .

For ǫ > 0, let Kǫ (xi , xj) = K
(

‖ι(xi )−ι(xj )‖Rp√
ǫ

)

. Then, for X ∈ C 3(TM)

and for all xi almost surely we have

lim
ǫ→0

lim
n→∞

1

ǫ

[

∑n
j=1 Kǫ (xi , xj)OijXj
∑n

j=1 Kǫ (xi , xj )
− Xi

]

=
m2

2dm0

(

〈ι∗∇
2X (xi ), el 〉

)d

l=1
,

where ∇2 is the connection Laplacian, Xi ≡ (〈ι∗X (xi ), el 〉)
d
l=1 ∈ R

d for all
i , {el (xi )}l=1,...,d is an orthonormal basis of ι∗TxiM,
ml =

∫

Rd ‖x‖
lK (‖x‖)dx , and Oij is the optimal orthogonal transformation

determined by the algorithm in the alignment step.
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Example: Connection-Laplacian for Sd embedded in R
d+1

The connection-Laplacian commutes with rotations and the eigenvalues
and eigen-vector-fields are calculated using representation theory:

S2 : 6, 10, 14, . . . .

S3 : 4, 6, 9, 16, 16, . . . .

S4 : 5, 10, 14, . . . .

S5 : 6, 15, 20, . . . .
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Figure: Bar plots of the largest 30 eigenvalues of D−1S for n = 8000 points
uniformly distributed over spheres of different dimensions.

Amit Singer (Princeton University) July 2011 18 / 24



More applications of VDM: Orientability from a point cloud
Encode the information about reflections in a symmetric n × n matrix Z

with entries

Zij =

{

detOij (i , j) ∈ E ,
0 (i , j) /∈ E .

That is, Zij = 1 if no reflection is needed, Zij = −1 if a reflection is needed,
and Zij = 0 if the points are not nearby. Normalize Z by the node degrees.
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Figure: Histogram of the values of the top eigenvector of D−1Z .
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Orientable Double Covering
Embedding obtained using the eigenvectors of the (normalized) matrix

[

Z −Z

−Z Z

]

=

(

1 −1
−1 1

)

⊗ Z ,

Figure: Left: the orientable double covering of RP(2), which is S2; Middle: the
orientable double covering of the Klein bottle, which is T 2; Right: the orientable
double covering of the Möbius strip, which is a cylinder.
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Ongoing Research in cryo-EM

◮ Molecules with symmetries

◮ Heterogeneity problem

◮ Signal/Image processing
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Summary and Outlook

◮ VDM is a generalization of diffusion maps: from functions to vector
fields

◮ A way to globally connect local PCAs.

◮ Vector diffusion distance: a new metric for data points

◮ Noise robustness: random matrix theory
(noise model – orthogonal transformations average to 0).

◮ Other higher order Laplacians from point clouds (e.g., the Hodge
Laplacian).

◮ Revealing the topology of the data (e.g., orientability).

◮ Diffusion on orbit spaces M/G .

◮ More applications
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Thank You!
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