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Introduction
Components of Radar

Components: transmitters, receivers, scene (targets
and clutter), noise (low SNR)
Under typical assumptions, range encoded as time
delay and range rate encoded in frequency shift
(narrowband approximation of Doppler)
The radar chooses the transmitted waveforms and
beamforms and the corresponding receiver processing
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Introduction
Operator view of radar

  x(t) y(t)

Scene
ReceiveTransmit

Linear

In a SISO radar, the scene acts on the transmitted
waveform and produces the received waveform
For typical scenarios, this transformation is well
modeled as a linear operator on L2(R) plus noise;
target and clutter operators summed
The design objective varies with application goal
(detection, classification, scene characterization)
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Operator view of radar
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Introduction
LTI view of radar

  x(t) y(t)

Scene
ReceiveTransmit

LTI

Modeling of a radar scene as a linear time-invariant
(LTI) system is common in the radar literature
In particular, LTI models have received attention in
connection with waveform design
But LTI models have a fundamental limitation...
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Introduction
Limitations of LTI models

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.0002 0.0004 0.0006 0.0008 0.001

T
ra

ns
m

itt
ed

 w
av

ef
or

m
 x

(t
)

Time

  

Scene

LTI

-1.5

-1

-0.5

0

0.5

1

1.5

0.01 0.0101 0.0102 0.0103 0.0104 0.0105 0.0106 0.0107 0.0108 0.0109 0.011

R
ec

ei
ve

d 
w

av
ef

or
m

 y
(t

)

Time

Sinusoids are eigenfunctions of LTI systems
So the only frequency components present in the
output are those present in the input
LTI models cannot accommodate Doppler!
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Hilbert-Schmidt Operator Model
Hilbert-Schmidt Operators

Our proposal: Replace LTI operator scene models with
Hilbert-Schmidt operator scene models, which
accommodate Doppler and have other desirable features

Fundamental building block: displacement operator
D(p, q) : L2(R)→ L2(R) by

D(p, q)f(t) = eiptf(t− q)

Here p denotes frequency shift and q time shift; the
(p, q) notation is adopted from physics where they are
standard for phase space coordinates
Every Hilbert-Schmidt class operator
S : L2(R)→ L2(R) can be written as a superposition of
displacement operators

S =
∫

p

∫
q
s(p, q)D(p, q) dp dq



Optimal
Waveform

Design

Cochran
Howard Moran

Introduction

H-S Model

Detection in
AWGN

Detection in
Clutter and
Noise

Summary

Hilbert-Schmidt Operator Model
Properties of Hilbert-Schmidt Operators
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H-S operators can impart frequency shifts as well as
time and phase shifts
So HS models can accommodate Doppler
LTI (convolutional) operators are a subclass of the H-S
class
But...

D(p, q)D(p′, q′) = D(p′, q′)D(p, q)ei(pq′−p′q)

i.e., H-S operators are generally non-commutative
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Hilbert-Schmidt Operator Model
Scene Model

Discrete target with position (p0, q0):∑
(p,q)∈N(0,0)

st(p, q)D(p, q) D(p0, q0)

Clutter: ∑
(p,q)

sc(p, q)D(p, q)

e.g., Markov random field, homogeneous, Gaussian...
Both target and clutter are often sparse, but not in a
finite library
Noise: Additive Gaussian n(t)
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Hilbert-Schmidt Operator Model
Radar Model

Standard radar set-up...
Transmitter: Baseband waveform w(t) with modulation
to carrier frequency p0

Receiver: Demodulation plus signal processing (H)

Typical goal:
Define optimal systems (waveform w & processing H) for
various classes of problems, ultimately with constraints
(e.g., power, bandwidth, time) on w
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Basic Detection Problem
Known target in AWGN

Receiver data at baseband...

Target present (H1)

x(t) =
∑

(p,q)∈N(0,0)

st(p, q)D(p0, q0)†

· D(p, q)D(p0, q0)w(t) + n(t)

= Bw(t) + n(t) ∼ N (Bw(t), σ2)

where D(p0, q0)† = exp(ip0q0)D(−p0,−q0) is the adjoint
of D(p0, q0)
Target absent (H0)

x(t) = n(t) ∼ N (0, σ2)
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Basic Detection Problem
Waveform optimization

Define

B =
∑

(p,q)∈N(0,0)

st(p, q)D(p0, q0)†D(p, q)D(p0, q0)

Detection is optimized for fixed ||w|| if ||Bw||2 is
maximized; i.e., w should maximize

〈Bw,Bw〉 =
〈
w,B†Bw

〉
and should thus be an eigenfunction of the
non-negative definite operator B†B corresponding to its
maximal eigenvalue
If w is constrained by power rather than energy, the
solution changes (another day...)
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Basic Detection Problem
Scene Model With Clutter

Signal at the receiver

s(t) = Tw(t) + Cw(t) + n(t)

T is a H-S class target operator
C is a H-S class clutter operator
n is white Gaussian noise

Receiver processes s with a H-S operator H
Detection decision on the basis of the statistic1

r(t0) = Hs(t0) = (HTw +HCw +Hn)(t0)

1See S. U. Pillai et al., “Waveform design optimization using
bandwidth and energy considerations,” Proceedings of the IEEE Radar
Conference, pp. 1–5, May 2008.
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Basic Detection Problem
SINR

The associated signal to interference plus noise ratio
(SINR) is

SINR(t0) =
|HTw(t0)|2

E|HCw(t0) +Hn(t0)|2
(1)

The initial objective is to maximize SINR(t0) for a given
waveform w

The problem of optimizing over w comes up later
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Basic Detection Problem
Noise Term

H may be represented as an integral operator with
kernel Φ : R2 → C

Hf(t) =
∫

R
Φ(t, τ)f(τ) dτ

By direct calculation,

E|Hn(t)|2 = σ2

∫
|Φ(t, τ)|2 dτ

Denoting ht0 = Φ(t0, ·), this gives

E|Hn(t0)|2 = σ2||ht0 ||2 (2)
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Basic Detection Problem
Clutter Term

For the clutter term,

|HCw(t0)|2 =
∫ ∫

ht0(τ)ht0(u)Cw(τ)Cw(u) dτ du

= 〈ht0 , GCht0〉 (3)

GC ≥ 0 is a “waveform dependent” Hermitian operator
defined by

GCf(t) =
∫

R
E[Cw(t)Cw(τ)] f(τ) dτ

Note that the clutter operator may be regarded as
random; no issues if n has zero mean and is
independent of C

For deterministic (known) clutter

GC = CPwC
†

where Pw is projection onto span w
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Basic Detection Problem
Signal Term and Maximization Formulation

In inner product form, the SINR numerator is

|HTw(t0)|2 = 〈ht0 , PTwht0〉 (4)

PTw is the rank-one projection operator onto span Tw
Substituting (2), (3), and (4) into (1) yields

SINR(t0) =
〈ht0 , PTwht0〉

〈ht0 , (σ2I +GC)ht0〉
(5)

SINR maximization is thus a generalized eigenvalue
problem

PTw > 0 with rank one
GC ≥ 0, so (σ2I +GC) > 0 provided σ2 > 0

Hence SINR is maximized by setting

ht0 = hmax = (σ2I +GC)−1/2Tw
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Basic Detection Problem
Maximizing SINR

Denote G = (σ2I +GC) > 0 and observe G is
self-adjoint
Then hmax = G−1/2Tw

SINRmax =

〈
G−1/2Tw, PTwG

−1/2Tw
〉〈

G−1/2Tw,G1/2Tw
〉

With f = Tw,

SINRmax =

〈
G−1/2f, PTwG

−1/2f
〉〈

G−1/2f,G1/2f
〉

=

〈
f,G−1/2PTwG

−1/2f
〉

〈f, f〉
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Basic Detection Problem
Maximizing SINR (cont’d)

SINRmax is the maximal eigenvalue of
G−1/2PTwG

−1/2 ≥ 0
Rank-one =⇒ its trace is its one positive eigenvalue

Hence

SINRmax = Tr(G−1/2PTwG
−1/2)

=
〈
G−1/2f,G−1/2f

〉
=

〈
f,G−1f

〉
=
〈
Tw,G−1Tw

〉
=

〈
Tw, (σ2I +GC)−1Tw

〉
This reduces to past results for LTI scene models
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Basic Detection Problem
Waveform Optimization

With deterministic clutter operator C, the problem of
finding a waveform wmax to maximize the SINR is

wmax = arg max
〈
Tw, (σ2I + CPwC

†)−1Tw
〉

The presence of Pw in the denominator makes this
problem “non-linear”

We are investigating an iterative algorithm
1 Take w0 to be an eigenvector corresponding to the

largest eigenvalue of T †T (“target-driven”)
2 For k > 0, solve the “linear” problem

w1 = arg max
〈
Tw, (σ2I + CPwk−1C

†)−1Tw
〉

“Clutter-driven” perspective leads to the same idea
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Determining the Scene
Can we get the scene operator from a few measurements?

The preceding examples assume the scene operator is
known or hypothetical scene operators are being tested
Scene operators are often composed of a sparse
superposition of D(p, q) operators
Radar measures the operator one dimension at a time;
time is often limited
Sparsity assumptions of radar scenes may be helpful in
regularizing this problem, but there are issues...

Operators are infinite-dimensional
Sparsity is not in a finite set, and is not usually well
approximated this way
The SNR is usually very low
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Summary
Summary and Ongoing Work

Hilbert-Schmidt class operators may be suitable to
model radar scenes with Doppler
Standard detection and waveform optimization
problems can be formulated and solved in this
framework
The problem of determining such operators from small
numbers of rank-one measurements has not been
treated, at lease in the radar literature
Sparsity assumptions of radar scenes may be helpful in
regularizing this problem
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