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Robust regression Student t

Logit models Lasso/ridge/bridge
Multinomial logit models MC+

Extreme-value models Group lasso

Support vector machines Normal/exponential-gamma
Topic models Normal/gamma

Restricted Boltzmann machines Generalized double Pareto
Neural networks Normal/inverted-beta
Autologistic models Normal/inverse-Gaussian
Penalized additive models Meridian filter

Our approach works for arbitrary
combinations of likelihood with prior.

No matrix inversion; no numerical derivatives.

Fully parallelizable block updates.
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“But | can solve all of these with an ¢! constraint.”’

True enough.

But consider an example: p = 25; n = 500; 1000 simulated data sets.

i = 1,50 fori=1,...,n
z ~ N(XB,I)

_ V5  (5x
P = { 0 (<20x>)

MLE Lasso-UT Lasso-CV HS

Median SSE 19.0 15.3 12.3 0.7
Mean SSE 68.6 15.4 11.7 1.6
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True enough.

But consider an example: p = 25; n = 500; 1000 simulated data sets.

y, = 1, gtorz=1,...,n
z ~ N(XSG,I)
/6 — { ‘(/)g ((25096)) (an “r-spike” signal)
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There seems to be precise separation of the
computationally nice penalties/priors ...
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...from the “statistically nice” priors.
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Our contribution: an algorithm for many priors in
this second class, when used in conjunction with
many common non-Gaussian likelihoods.
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~ Fan and Li, 2001

Pericchi and Smith, 1992
Masreliez, 1975

T Brown, 1971

etc.

Our contribution: an algorithm for many priors in
this second class, when used in conjunction with
many common non-Gaussian likelihoods.



A teaser example: logit with a bridge penalty

A
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To find the MAP, just iterate three steps
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To find the MAP, just iterate three steps

Don’t actually do this.
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Example: covariate-dependent disease networks

~| 12m patient records comprising ICD-9 codes + prescriptions + covariates
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Our approach: a tree of graphs
Tree splits on covariates, mainly demographics and geography.

Each terminal node is a disease network for a subgroup of the population.
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Goh et. al., PNAS (2007)

Our approach: a tree of graphs

Tree splits on covariates, mainly demographics and geography.

Each terminal node is a disease network for a subgroup of the population.



The big picture

We use normal variance—-mean mixtures to represent a wide class of
objective functions commonly encountered in high-dimensional problems.

By modern Bayesian standards, these are pretty simple.

But they are ubiquitous, useful, and often the only tractable approach in their
respective domains for data sets beyond a certain size.



This class is surprisingly broad. For example:
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We get an exact MAP estimate.
No variational approximation.
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(e.g. Blei and Lafferty, 2009)




Connection with previous work

Penalties/priors corresponding to scale mixtures:
lasso (Tibshirani, 1996; Park and Casella, 2008; Hans, 2009)
bridge estimators (West, 1987; Huang et al., 2008)
relevance vector machines (Tipping, 2001)
normal/Jeffreys (Figueiredo, 2003; Bae and Mallick, 2004)
normal/exponential-gamma (Griffin and Brown, 2005)
normal/inverse-Gaussian (Caron and Doucet, 2008)
normal/gamma (Griffin and Brown,2010)
horseshoe/inverted-beta prior (CPS 2010; Polson and Scott, 201 |)
double-Pareto (Armagan et al., 2010)

Algorithms for regularized regression
LARS (Efron et al., 2004)
LQA (Fan and Li,2001) and LLA (Zou and Li, 2008)
EM/ECME (Dempster et al., |977; Meng and Rubin, 1993; many others)
MM (Hunter and Lange, 2000; Taddy, 2010)
MCMC for support-vector machines (Polson and Steve Scott, 201 1)
MCMC for logistic regression (Gramacy and Polson; Holmes and Held; Steve Scott; SFS; others)

Distributional theory based on variance-mean mixtures
Z distributions (Fisher, 1923)
Generalized inverse-Gaussian distributions (Barndorff-Nielsen 1977)
Penalties, priors, and Lévy processes (Polson and Scott, 201 |)



The standard scale-mixture trick

p(z) = f " (2] 0) p(o) do



B =argmin{|ly =X BIP +v>_g(5,)}

yIB) ~ NXpB,o°B)
(Bi |75, X) ~ N(@O,7°X)
/112. ~ 71(/112.)
(t%,0%) ~ 77?07
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(y18) ~ N(XB,0°0)
(Bi |75, X) ~ N(@O,7°X)
/112. ~ 77(/112.)
(t%,0%) ~ 77?07

Exponential —> Lasso
Inverted-beta —> Horseshoe
Gamma —> Normal/gamma
(Andrews and Mallows; West)
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The standard scale-mixture trick

p(z) = f " (2] 0) p(o) do



The standard scale-mixture trick
pe)= | ¢z 19) o) de
0

Two ways of generalizing this:
the Levy representation

variance-mean mixtures



|) The Levy representation

Let ¢(t), t > O, be a nonnegative-real-valued, totally monotone function such
that lim, ,(z)=0.

Part A: Suppose that these conditions are met for ¢ = f(;). Then the prior distri-
bution p(f; | s) < exp{—s¢[f(5;)]}, where s > 0, is the moment-generating
function of a subordinator 7'(s), evaluated at /(5 ), whose Lévy measure sat-
isfies

J(1) = J "1 —exp(=tx)} u(dx). ()

Part B: Suppose that these conditions are met for ¢t = ,8? /2. Then p(5; | s)
exp{—s( ,5? /2)}, where s > 0, is a mixture of normals given by

p(B;]5)ox J TN(B, 0,71 TV p(T) d T

where p(T) is the density of the subordinator 7', observed at time s, whose
Levy measure u(dx) satisfies (1).
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Let ¢(t), t > O, be a nonnegative-real-valued, totally monotone function such
that lim, ,(z)=0.

Part A: Suppose that these conditions are met for ¢ = f(;). Then the prior distri-
bution p(f; | s) < exp{—s¢[f(5;)]}, where s > 0, is the moment-generating
function of a subordinator 7'(s), evaluated at /(5 ), whose Lévy measure sat-
isfies

J(1) = j "1 —exp(=tx)} u(dx). ()

Part B: Suppose that these conditions are met for ¢t = ,8? /2. Then p(5; | s)
exp{—s( ,5? /2)}, where s > 0, is a mixture of normals given by

p(B;]5)ox j TN(B, 0,71 TV p(T) d T

where p(T) is the density of the subordinator 7', observed at time s, whose
Levy measure u(dx) satisfies (1).

(super useful for block-wise penalties, e.g. the group lasso)



2) Mean-variance mixtures

p&)= | —bletorp@) do
__——J0

(‘OO

p)= | Pl | utko,o) p(o) do

(like Brownian motion with a drift; useful for non-Gaussian likelihoods)



The generic regularization problem
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We consider properties of the posterior distribution

(
7 P
U o p(Blry) x exp ] — 300 B) - S 8(B, 55
\ =1 =1

X {ﬁp(zi |xZT/6)}< Hp(,@]-h) }
= p(z|B)-p(Bl7)

where z; =y, — xZ.T [ for regression, or z; =y, xl.T B for classification.

\

)



The generic regularization problem

Suppose that both the likelihood and prior/penalty can be represented as
normal variance-mean mixtures.

(‘OO

(z; | B) = D(z; | 1, +x,0;,0°w;) dP(w;)

JO

00
P17 = | BB, s +rsh,w2s?A) dP(X)).




Then we have an easy EM:

E Step

Compute the expected value of the log posterior, given the current parameter
estimate:

QB f®) = f log p(B | 0, A 753)p(0, A| B9, 7,5) deo d 2.

M Step

Maximize the complete-data posterior to update the parameter estimate:

Bl = argmax Q(f| B).



The E Step

The observed-data log posterior is

p(B]7.y)= J 7(B] 3 Ay) plc, ALy, ) deo dA.

Exploiting the mean-variance mixture representation, the complete-data log pos-
terior 1s

1< 2
log (B | @, 4 7,9) = co(e0, Ay, ) = = D ey (2= p, — 20,
1=1
& 2
_2527221:’1]' (/61'_1“/3_)%’1])
e

This can be shown to depend linearly upon the conditional moments {¢>'} and

{;1]_1} Theretore the E-step 1s to simply plug these conditional expected values into

the complete-data log posterior.



The E Step

Theorem: these conditional moments are:

A

(B, —uph B =xp+7757 g'(B; | 7),
(2; — )] S =, +07 f(z;| B),

Key fact: we don’t need the conditional posterior for the latent variances.

Only need the functional form of the likelihood (f) and prior (g).

These are pre-specified.



Tilteq, iteratively re-weighted least squares

E step

Given a current estimate 5 = (3€), compute the conditional moments of the
latent variances as

(/5?g> — /1/3);1]-_1<g> xXg T TZS-Z 8/(/5(-g) [ 7),
(Z§g>—/lz)05i_1(g) = x, _|_sz (g | ).

M Step

For regression, compute (3€+1) as

(g+1) — (—2¢—-1A-1(2) - wTO-1 %\ %7 (O-1g), _ ~1(g) _
B TSTATW X OTWX) X (T8y - w x 1).

z

For classification, compute 5+ as

Ble+h) = <T—25—1[\—1(g) _|_XTQ—1(g)X*>_1 x7(—1(g) </uz1 + xzo?)(g)> _



This works for a broad class of models.

Likelihood f(z; | B) k, u,  plw;
Squared-error zl.2 0 0 w,=1
Absolute-error |z, | 0 0  Exponential
Check loss 1z;| + (2g — 1)z; —-2q 0 GIG

SVM max(1—z;,0) 1 1 GIG
Logistic log(1+e%) 1/2 0  Polya
Penalty function g(B; ) ks g p(4;)

Ridge (,3]-/7)2 0 0 w;=

Lasso 1B/ 0 0  Exponential
Bridge B;/7]° 0 0  Stable

Gen. Double-Pareto {(1+a)/7tlog(1+|5;]/a7) 0 0  Exp-Gam

+ multinomial logit, autologistic, topic models, RBMs, extreme-value ....



Two key identities:

Q’z — )(2 Ol [ 00 \/ 2 2
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1 ea<6)_/u) (00 ; ]
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B(a, x) (140~ ~ ), P (0| 1 ) P01(? | )

Improper versions (treat purely as an integral identity)

("OO
—1

a  exp { —2c7!

d(u | —av,cv)do

maX au,Q }
JO

r'OO

C_lexp{ 26_1/06] } d(u | =2t = Do, c0)e ™17 do

JO

f’OO

(+expl—pal)™ = | Bl | 4= (1/2)0,9) pyi(2]0,1) do

where p (1) = %\u\ + <q — %) u 1s the check-loss function.



Back to the teaser example: logit models

A Polya mixing distribution ...

Ppol v|a,a—2k) Z‘wke_“’e”

The terms 1n this sum are

where b =

(a+k)k+Ek)
dk —
2
3 a, \ [ =28 (0 + k)
ko dk};! (a]-—ozk> B < k > B(8+5b,8-b)"
Ham b8 =it Ryand (0 )= SR



Back to the teaser example: logit models

A Polya mixing distribution leads to a Z distribution marginal.
()"

B(a,k) <1 4 e@—p)Z(a—/e)

pz(0 | a,k)=

This family includes the logistic regression model as a limiting, improper
case: (a, k, p) = (I, 1/2,0).

Our representation theorem gives the relevant conditional moment as

| e’ 1 -
! Z. 1—|—el.Z 2 g

l



Multinomial logit

The probability that observation i falls into class k is

_ CXP(XZ-Tﬁk)
Zle exp(xl.T,@l)

6)16' = P(y, = k)

To represent the multinomial logit model in our framework, let

Nei  —  CXP <XZ-T/5k — C/ei) /11 +exp <x,'T/6k — Cki>}
i(Bw) = log) expix 3}
14k

(Holmes and Held, 2006)



Multinomial logit

Write the conditional Iikelihood for category k as

LBe | Bryy) OCHI_[@”

1=1 [=1

o [ [l faw;(1 = )}
1=1

0<l_[77”“ (=)} 7

[ eXPO//eixl' /B/e — Y1iCr;)
x m

L1+ eXP(sz‘x;/Bk — Vi ki)

f‘OO

= 1_[ P(Zg; | pag; + 2455 E1i) Py (Sri | 1,0) d&y,;

zlJO

where x =1/2, z,; = y,;x" Bas tpi = VpiChi» and ppy(&; 1 1,0) is a function of &,
that is the limit ot a Polya density as 4 — 0.



An exact ECM

For iterationt= 1, 2, ...

For k=2,...,K, cycle through the following steps:

Update 2,:
—
4y = alog D jexp(x! )
I £k
0 1 =P {Z/i?_“g;} 1
R O ON N N (0 <t>}_§
ki ki EPV%: T P
Qg) — diag(wgl),...,co/(;Z),

where ﬁg) is the current estimate for the kth block of coefficients, and
where y;,, = %1 is an indicator of whether y, = k.



An exact ECM

For iterationt= 1, 2, ...

For k=2,...,K, cycle through the following steps:

Update A, :

ki T ©)
ﬁk]‘
(6) . 1 (¢) (¢)
Ak — dlag(/lkl,...,/lkp),

where ¢’ is the derivative of the penalty function ¢(5,, ;).



An exact ECM

For iterationt= 1, 2, ...

For k=2,...,K, cycle through the following steps:

Update 3,: Solve the linear system Ag) ,8 (r+1) " for ,5
A T—zA;;>+;z,gng>;z,€
1
) _— %7 (o), 0

where X, 1s the 7 X p matrix having rows X, = y,.x;, 11s a column vector

of ones, and /ug) = (/ug?’ e /ug;)T.



An exact ECM

For iterationt= 1, 2, ...

For k=2,...,K, cycle through the following steps:

Update 3,: Solve the linear system AZ) ,5 (r+1) " for ﬁ
A T—zAgu;zgﬂgbzk
1
@) — T {({o®, 0

where X, 1s the 7 X p matrix having rows X, = y,.x;, 11s a column vector

of ones, and /ug) = (N<k?> e IuiZ)T.

Don’t solve this exactly.



Tilted, iteratively re-weighted conjugate gradient

In the update step for B3, don’t solve the system exactly. Instead:

increment / and set

While |A, | > 8

min?

C,l _ C,l—l
/6< )= /656 )_I_A(t,l—l)
Yo,y = T, l—1) — X, 1-1),1-1)
T
r(t,l)r(tJ)
}/(t,l) -— T
TRV CNERY
d(z:,l) = 7’(t,1)‘|‘7/<z:,1)d(z,1_1)
oy = AV
T
o . 7/.(t,O)r(tJ)
(&) T
d(t,l)c(tal)
Dopy = .



Tilted, iteratively re-weighted conjugate gradient

In the update step for B3, don’t solve the system exactly. Instead:

increment / and set

While |A, | > 8

min?

C,l _ C,l—l
/6< )= /656 )_I_A(t,l—l)
Yo,y = T, l—1) — X, 1-1),1-1)
T
r(t,l)r(tJ)
}/(t,l) -— T
TRV CNERY
dopy = Tt Ve
Parallelize this. <., = Ag)d(t,m
T
o . 7/.(t,O)r(tJ)
(&) T
d(t,l)c(tal)
Dopy = endu



Other methods

You can solve many of these problems using tailored methods—but not all
of them, and rarely this simply or efficiently.

LARS: efficient only in Gaussian models

Coordinate descent: can get stuck; may require numerical derivatives; irredeemably
serial

LLA/LQA: exact only in Gaussian models (where it’s a special case of our method)

Variational methods: never exact; sometimes inconsistent; poor in cases of
interesting a posteriori dependence



How would you do MCMC in this class?

Some people have worked out special cases.

Here’s an interesting fact:

00 1 1 N
Pty = DD (w3 HO




How would you do MCMC in this class?

There is a duality between the scale-mixture and MGF representations for C:

{ (e—%C> — & <<277;C>_%e_8;22(3> — :
cosh (%)

A logit-type likelihood would thus look like

a+b
24+beax

1
(14 e*)*+? cos h(%)

l
QN
N =




How would you do MCMC in this class?

Therefore we can simulate from C using Polya-Gamma distributions:

© Y(a+b,1)
(Clx) = ZZ
n=1 a,
15 4(n—% 27'[2
a, —



Robust regression Student t

Logit models Ridge

Multinomial logit models Lasso

Extreme-value models Bridge

Support vector machines Normal/exponential-gamma
Topic models Normal/gamma

Restricted Boltzmann machines Generalized-t (double Pareto)
Neural networks Normal/inverted-beta
Autologistic models Normal/inverse-Gaussian
Penalized additive models Meridian filter

The theory of variance-mean mixtures allows MAP estimation for
arbitrary combinations of model (left) with prior or penalty (right).

With the conjugate-gradient version, there are no matrix inverses
and no numerical derivatives.



Three papers
“Sparse Bayes estimation in non-Gaussian models via data augmentation.”
“Sparse multinomial logistic regression via nonconcave penalized likelihood.”

“Exact MAP estimation in logistic-normal topic models.”



