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“But I can solve all of these with an    constraint.”

True enough.

But consider an example: p = 25; n = 500; 1000 simulated data sets.

yi = 1zi>0 for i = 1, . . . , n

z ∼ N(Xβ, I )

β =
� �

5 (5x)
0 (20x)

MLE Lasso-UT Lasso-CV HS

Median SSE 19.0 15.3 12.3 0.7

Mean SSE 68.6 15.4 11.7 1.6

�1
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(an “r-spike” signal)







There seems to be precise separation of the 
computationally nice penalties/priors . . .

. . . from the “statistically nice” priors.

Our contribution: an algorithm for many priors in 
this second class, when used in conjunction with 
many common non-Gaussian likelihoods.
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A teaser example: logit with a bridge penalty

β̂= arg min
β∈�p





n�
i=1

log(1+ exp{−yi xT
i β})+

p�
j=1
|β j/τ s j |α


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PENALIZED REGRESSIONS 
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-1 0 -1 0 
Figure 1. Constrained Areas of Bridge Regressions with t = 1. 

to pj at /j - 0, j = 1,...,p. Denote Sj(P3,X,y) = ORSS/9/3j and d(/3j,A,) - 
A7y/ JY -lsign(/j). Setting oG/a3j = 0 leads to 

S (/, X, y) + d(31, A,) = 0 

S(/, x, y) + d(p, A, y) = 0. 
(P3) 

Problem (P2) can then be solved through (P3). In fact, we have the following theorems 
on (P3) for more general function Sj. 

Let / be a vector in a p-dimensional parameter space B, X an n x p matrix, and 
y a vector in an n-dimensional sample space R". For fixed X, y, A > O, y > 1, define 
real functions Sj(.,X,y): B -- R,/3 -+ Sj(3,X,y), j = 1,...,p, and function 
d(/3j,A, y) = Ah/Pjl/-lsign(3j). Denote S = (S1... ,Sp)T. We have the results for 
problem (P3). 

Theorem 1. Given 7 > 1, A > O. Iffunction S is continuously differentiable with 
respect to p and the Jacobian (OS/9/3) is positive-semi-definite, then 

1. (P3) has a unique solution /(A, 7y), which is continuous in (A, y); and 
2. the limit of the unique solution 3/(A, 7) exists as y -+ 1+. Denote the limit solution 

by /3(A, 1+), then lim 1l+ /3(A, y) = /(A, 1+). 
Theorem 2. Given y > 1, A > O. If functions Sj's are -2 multiples of the 

score functions of a joint likelihood function for Gaussian distribution, and the Jacobian 
(OS/a/3) is positive definite, then 

0 

0 

399 

1 1 

ouch.



To find the MAP, just iterate three steps

β(g+1) =
�
τ−2S−1Λ̂−1(g ) +XT

� Ω̂
−1(g )X�
�−1
�1

2
XT
� 1
�

ω̂−1(g+1)
i =

1

z (g )i





e z (g )i

1+ e z (g )i

− 1
2





λ̂−1(g+1)
j = α(τ s j )

2−α|β(g )j |α−2
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Don’t actually do this. 



Example: covariate-dependent disease networks

~112m patient records comprising ICD-9 codes + prescriptions + covariates

ISCHEMIC HEART DISEASE (410-414)
410 Acute myocardial infarction	


410.0 Of anterolateral wall
410.1 Of other anterior wall
410.2 Of inferolateral wall
410.3 Of inferoposterior wall
410.4 Of other inferior wall
410.5 Of other lateral wall
410.6 True posterior wall infarction
410.7 Subendocardial infarction
410.8 Of other specified sites
410.9 Unspecified site

Our approach: a tree of graphs

Tree splits on covariates, mainly demographics and geography. 

Each terminal node is a disease network for a subgroup of the population.
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Goh et. al., PNAS (2007)



The big picture

We use normal variance–mean mixtures to represent a wide class of 
objective functions commonly encountered in high-dimensional problems.

By modern Bayesian standards, these are pretty simple.

But they are ubiquitous, useful, and often the only tractable approach in their 
respective domains for data sets beyond a certain size.



This class is surprisingly broad.  For example:

p(α1:K ,β1:Nd
|W ,µ,Σ)∝

D�
d=1



p(βd |µ,Σ) ·

Nd�
n=1




K�
k=1




eβd k

�K
l=1 eβd l


αk ,wn






 · p(α1:K )

We get an exact MAP estimate.
No variational approximation.
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(e.g. Blei and Lafferty, 2009)

We get an exact MAP estimate.
No variational approximation.



Connection with previous work

Penalties/priors corresponding to scale mixtures:
lasso (Tibshirani, 1996; Park and Casella, 2008; Hans, 2009)
bridge estimators (West, 1987; Huang et al., 2008)
relevance vector machines (Tipping, 2001)
normal/Jeffreys (Figueiredo, 2003; Bae and Mallick, 2004)
normal/exponential-gamma (Griffin and Brown, 2005)
normal/inverse-Gaussian (Caron and Doucet, 2008)
normal/gamma (Griffin and Brown, 2010)
horseshoe/inverted-beta prior (CPS 2010; Polson and Scott, 2011)
double-Pareto (Armagan et al., 2010)

Algorithms for regularized regression
LARS (Efron et al., 2004)
LQA (Fan and Li, 2001) and LLA (Zou and Li, 2008)
EM/ECME (Dempster et al., 1977; Meng and Rubin, 1993; many others)
MM (Hunter and Lange, 2000; Taddy, 2010)
MCMC for support-vector machines (Polson and Steve Scott, 2011)
MCMC for logistic regression (Gramacy and Polson; Holmes and Held; Steve Scott; SFS; others)

Distributional theory based on variance-mean mixtures
Z distributions (Fisher, 1923)
Generalized inverse-Gaussian distributions (Barndorff-Nielsen 1977)
Penalties, priors, and Lévy processes (Polson and Scott, 2011)



The standard scale-mixture trick

p(z) =
� ∞

0
φ(z | v) p(v) d v



(y |β) ∼ N(Xβ,σ2β)
(βi | τ2,λ2

i ) ∼ N(0,τ2λ2
i )

λ2
i ∼ π(λ2

i )

(τ2,σ2) ∼ π(τ2,σ2)

β̂= argmin
�
�y−Xβ�2+ ν

p�
j=1

g (β j )
�

(β | y,τ2,Λ,σ2) ∼ N(β̂, Σ̂β)

β̂ = (τ−2Λ−1+X T X )−1X T y



(y |β) ∼ N(Xβ,σ2β)
(βi | τ2,λ2

i ) ∼ N(0,τ2λ2
i )

λ2
i ∼ π(λ2

i )

(τ2,σ2) ∼ π(τ2,σ2)

Exponential —> Lasso
Inverted-beta —> Horseshoe
Gamma —> Normal/gamma
(Andrews and Mallows; West)
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The standard scale-mixture trick

Two ways of generalizing this:

the Lévy representation

variance-mean mixtures

p(z) =
� ∞

0
φ(z | v) p(v) d v



1) The Lévy representation

Let ψ(t ), t > 0, be a nonnegative-real-valued, totally monotone function such
that limt→0ψ(t ) = 0.

Part A: Suppose that these conditions are met for t ≡ f (β j ). Then the prior distri-
bution p(β j | s ) ∝ exp{−sψ[ f (β j )]}, where s > 0, is the moment-generating
function of a subordinator T (s ), evaluated at f (β j ), whose Lévy measure sat-
isfies

ψ(t ) =
� ∞

0
{1− exp(−t x)} µ(dx) . (1)

Part B: Suppose that these conditions are met for t ≡ β2
j/2. Then p(β j | s ) ∝

exp{−sψ(β2
j/2)}, where s > 0, is a mixture of normals given by

p(β j | s )∝
� ∞

0
N
�
β j | 0,T −1� T −1/2 p(T ) dT ,

where p(T ) is the density of the subordinator T , observed at time s , whose
Lévy measure µ(d x) satisfies (1).
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(super useful for block-wise penalties, e.g. the group lasso)



2) Mean-variance mixtures

(like Brownian motion with a drift; useful for non-Gaussian likelihoods)

p(z) =
� ∞

0
φ(z |µ+ kv, v) p(v) d v

p(z) =
� ∞

0
φ(z | v) p(v) d v



The generic regularization problem

We consider properties of the posterior distribution

e−Q(β) ∝ p(β | τ, y) ∝ exp



−

n�
i=1

f (yi , x �iβ)−
p�

j=1
g (β j/τ s j )





∝
�

n�
i=1

p(zi | xT
i β)

�


k�
j=1

p(β j | τ)





= p(z |β) · p(β | τ) ,

where zi = yi − xT
i β for regression, or zi = yi xT

i β for classification.

Q(β) =
n�

i=1
f (yi , xT

i β)+
p�

j=1
g

�
β j

τ s j

�



Suppose that both the likelihood and prior/penalty can be represented as 
normal variance-mean mixtures.

p(zi |β) =
� ∞

0
φ(zi |µz +κzωi ,σ

2ωi ) d P (ωi )

p(β j | τ) =
� ∞

0
φ(β j |µβ+κβλ j ,τ

2 s2
j λ j ) d P (λ j ) .

The generic regularization problem



Then we have an easy EM:

E Step

M Step

Compute the expected value of the log posterior, given the current parameter
estimate:

Q(β |β(g )) =
�

log p(β |ω,λ,τ, y)p(ω,λ |β(g ),τ, y) dω dλ .

Maximize the complete-data posterior to update the parameter estimate:

β(g+1) = argmax
β

Q(β |β(g )) .



The E Step

The observed-data log posterior is

p(β | τ, y) =
�
π(β |ω,λ, y) p(ω,λ | y,τ) dω dλ .

Exploiting the mean–variance mixture representation, the complete-data log pos-
terior is

log p(β |ω,λ,τ, y) = c0(ω,λ, y,τ)− 1
2

n�
i=1
ω−1

i

�
zi −µz −κyωi

�2

− 1

2s2
j τ

2

p�
j=1
λ−1

j (β j −µβ−κβλ j )
2

This can be shown to depend linearly upon the conditional moments {ω̂−1
i } and

{λ̂−1
j }. Therefore the E-step is to simply plug these conditional expected values into

the complete-data log posterior.



The E Step

Theorem: these conditional moments are:

Key fact: we don’t need the conditional posterior for the latent variances.

Only need the functional form of the likelihood (f) and prior (g). 

These are pre-specified.

(β j −µβ)λ̂−1(g )
j = κβ+τ

2 s2
j g �(β j | τ) ,

(zi −µz )ω̂
−1(g )
i = κz +σ

2 f �(zi |β) ,



E step

M Step

Tilted, iteratively re-weighted least squares

Given a current estimate β = β(g ), compute the conditional moments of the
latent variances as

(β(g )j −µβ)λ̂
−1(g )
j = κβ+τ

2 s2
j g �(β(g )j | τ) ,

(z (g )i −µz )ω̂
−1(g )
i = κz +σ

2 f �(z (g )i |β) .

For regression, compute β(g+1) as

β(g+1) =
�
τ−2S−1Λ̂−1(g ) +XT Ω̂−1(g )X

�−1
XT
�
Ω̂−1(g )y −µzω

−1(g )−κz1
�

.

For classification, compute β(g+1) as

β(g+1) =
�
τ−2S−1Λ̂−1(g ) +XT

� Ω̂
−1(g )X�
�−1

XT
� Ω̂
−1(g )
�
µz1+κzω̂

(g )
�

.



This works for a broad class of models.

Likelihood f (zi |β) kz µz p(ωi )
Squared-error z2

i 0 0 ωi ≡ 1
Absolute-error |zi | 0 0 Exponential
Check loss |zi |+ (2q − 1)zi 1− 2q 0 GIG
SVM max(1− zi , 0) 1 1 GIG
Logistic log(1+ e zi ) 1/2 0 Polya

Penalty function g (β j | τ) kβ µβ p(λ j )
Ridge (β j /τ)2 0 0 ωi ≡ 1
Lasso |β j /τ| 0 0 Exponential
Bridge |β j /τ|α 0 0 Stable
Gen. Double-Pareto {(1+α)/τ} log(1+ |β j |/ατ) 0 0 Exp–Gam

+ multinomial logit, autologistic, topic models, RBMs, extreme-value . . . .



α2−κ2

2α
e−α|θ−µ|+κ(θ−µ) =

� ∞
0
φ (θ |µ+κv, v)) pg i g

�
v | 1,0,
�
α2−κ2� d v

1
B(α,κ)

eα(θ−µ)

(1+ eθ−µ)2(α−κ)
=
� ∞

0
φ (θ |µ+κv, v) ppol (v | α,α− 2κ) d v .

Two key identities:

Improper versions (treat purely as an integral identity)

a−1 exp
�
−2c−1 max(au, 0)

�
=
� ∞

0
φ(u | −av, cv) d v

c−1 exp
�
−2c−1ρq (u)
�
=
� ∞

0
φ(u | −(2τ− 1)v, cv)e−2τ(1−τ)v d v

(1+ exp{u −µ})−1 =
� ∞

0
φ(u |µ− (1/2)v, v) ppol (v | 0,1) d v

where ρq (u) =
1
2 |u|+
�

q − 1
2

�
u is the check-loss function.



Back to the teaser example: logit models

A Polya mixing distribution . . . 

ppol (v | α,α− 2k) =
∞�

k=0

wk e−ak v

The terms in this sum are

ak =
(α+ k)(k + k)

2

wk = ak

�
j �=k

�
ak

aj − ak

�
=
� −2δ

k

� (δ + k)
B(δ + b ,δ − b )

,

where b = 1
2 (α− k), δ = 1

2 (α+ k), and
� −2δ

k

�
= (−1)k (2δ)...(2δ+k−1)

k! .



Back to the teaser example: logit models

A Polya mixing distribution leads to a Z distribution marginal.

This family includes the logistic regression model as a limiting, improper 
case: (a, k, µ) = (1, 1/2, 0).

Our representation theorem gives the relevant conditional moment as

pZ (θ |µ,α, k) =
1

B(α, k)
(eθ−µ)α

(1+ eθ−µ)2(α−k)

ω̂−1
i =

1
zi

�
e zi

1+ e z
i

− 1
2

�
, zi = yi xT

i β



Multinomial logit

The probability that observation i falls into class k is

To represent the multinomial logit model in our framework, let

θki = P (yi = k) =
exp(xT

i βk )�K
l=1 exp(xT

i βl )

ηki = exp
�

xT
i βk − cki

�
/{1+ exp
�

xT
i βk − cki

�
}

cki (β(−k)) = log
�
l �=k

exp{xT
i βl }

(Holmes and Held, 2006)



Multinomial logit

Write the conditional likelihood for category k as

L(βk |β(−k), y)∝
n�

i=1

K�
l=1

θỹl i
l i

∝
n�

i=1
ηỹki

ki
{wi (1− ηki )}1−ỹki

∝
n�

i=1
ηỹki

ki
{(1− ηki )}1−ỹki

∝
n�

i=1

�
exp(γki xT

i βk − γki cki )

1+ exp(γki xT
i βk − γki cki )

�

=
n�

i=1

� ∞
0
φ(zki |µki +κξki ,ξki ) pPY (ξki | 1,0) dξki

where κ = 1/2, zki = γki xT
i βk , µki = γki cki , and pPY (ξki | 1,0) is a function of ξki

that is the limit of a Polya density as b → 0.



An exact ECM

For iteration t = 1, 2, . . . 

For k = 2, . . . ,K , cycle through the following steps:

Update Ωk :

z (t )
ki

:= γki xT
i β

(t )
k

µ(t )
ki

:= γki log
�
l �=k

exp(xT
i β

(t )
l
)

ω(t )
ki

:=




1

z (t )
ki
−µ(t )

ki







exp
�

z (t )
ki
−µ(t )

ki

�

1+ exp
�

z (t )
ki
−µ(t )

ki

� − 1
2




Ω(t )
k

:= diag(ω(t )
k1

, . . . ,ω(t )
kn
) ,

where β(t )
k

is the current estimate for the kth block of coefficients, and
where γki =±1 is an indicator of whether yi = k.



An exact ECM

For iteration t = 1, 2, . . . 

For k = 2, . . . ,K , cycle through the following steps:

Update Λk :

λk j :=
τ2ψ�(β(t )

k j
/τ)

β(t )
k j

Λ(t )
k

:= diag(λ(t )
k1

, . . . ,λ(t )
k p
) ,

where ψ� is the derivative of the penalty function ψ(βk j ).



An exact ECM

For iteration t = 1, 2, . . . 

For k = 2, . . . ,K , cycle through the following steps:

Update βk : Solve the linear system A(t )
k
β(t+1)

k
= b (t )

k
for β(t+1)

k
, with

A(t )
k

:= τ−2Λ(t )
k
+ X̃ T

k Ω
(t )
k

X̃k

b (t )
k

:= X̃ T
k

�
Ω(t )

k
µ(t )

k
+

1
2

1
�

,

where X̃k is the n× p matrix having rows x̃i = γki xi , 1 is a column vector
of ones, and µ(t )

k
= (µ(t )

k1
, . . . ,µ(t )

kn
)T .



An exact ECM

For iteration t = 1, 2, . . . 

For k = 2, . . . ,K , cycle through the following steps:

Update βk : Solve the linear system A(t )
k
β(t+1)

k
= b (t )

k
for β(t+1)

k
, with

A(t )
k

:= τ−2Λ(t )
k
+ X̃ T

k Ω
(t )
k

X̃k

b (t )
k

:= X̃ T
k

�
Ω(t )

k
µ(t )

k
+

1
2

1
�

,

where X̃k is the n× p matrix having rows x̃i = γki xi , 1 is a column vector
of ones, and µ(t )

k
= (µ(t )

k1
, . . . ,µ(t )

kn
)T .

Don’t solve this exactly.



Tilted, iteratively re-weighted conjugate gradient

In the update step for ß, don’t solve the system exactly.  Instead:

While |∆(t ,l )|>δmin, increment l and set

β(c ,l ) := β(c ,l−1)
k

+∆(t ,l−1)

r(t ,l ) := r(t ,l−1)−α(t ,l−1)c(t ,l−1)

γ(t ,l ) :=
r T
(t ,l ) r(t ,l )

r T
(t ,l−1) r(t ,l−1)

d(t ,l ) := r(t ,l ) + γ(t ,l )d(t ,l−1)

c(t ,l ) := A(t )
k

d(t ,l )

α(t ,l ) :=
r T
(t ,0) r(t ,l )

d T
(t ,l )c(t ,l )

∆(t ,l ) := α(t ,l )d(t ,l ) .



Tilted, iteratively re-weighted conjugate gradient

In the update step for ß, don’t solve the system exactly.  Instead:

While |∆(t ,l )|>δmin, increment l and set

β(c ,l ) := β(c ,l−1)
k

+∆(t ,l−1)

r(t ,l ) := r(t ,l−1)−α(t ,l−1)c(t ,l−1)

γ(t ,l ) :=
r T
(t ,l ) r(t ,l )

r T
(t ,l−1) r(t ,l−1)

d(t ,l ) := r(t ,l ) + γ(t ,l )d(t ,l−1)

c(t ,l ) := A(t )
k

d(t ,l )

α(t ,l ) :=
r T
(t ,0) r(t ,l )

d T
(t ,l )c(t ,l )

∆(t ,l ) := α(t ,l )d(t ,l ) .

 Parallelize this.



Other methods

You can solve many of these problems using tailored methods—but not all 
of them, and rarely this simply or efficiently.

LARS: efficient only in Gaussian models

Coordinate descent: can get stuck; may require numerical derivatives; irredeemably 
serial

LLA/LQA: exact only in Gaussian models (where it’s a special case of our method)

Variational methods: never exact; sometimes inconsistent; poor in cases of 
interesting a posteriori dependence



How would you do MCMC in this class?

Some people have worked out special cases.

Here’s an interesting fact:

p(C ) = 4π2
∞�

n=0
(−1)n
�

n+
1
2

�
e−2(n+ 1

2 )
2
π2C

C D=
1

2π2

∞�
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� (1)
�

n− 1
2

�2

ppol( 1
2 , 1

2 )(λ) =
∞�

n=0
(−1)n
�

n+
1
2

�
e−

1
2 (n+ 1

2 )
2
λ

C D=
1

4π2 λ



How would you do MCMC in this class?

There is a duality between the scale-mixture and MGF representations for C:

A logit-type likelihood would thus look like

�
�

e−
x2
2 C
�
=�
�
(2πC )−

1
2 e−

x2

8π2C

�
=

1

cos h
�

x
2
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2a+b eax

(1+ e x )a+b
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1
2 (a−b )x ·



1

cos h
�

x
2

�


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1
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How would you do MCMC in this class?

Therefore we can simulate from C using Polya-Gamma distributions:

(C | x) D= 2
∞�

n=1

� (a+ b , 1)
an

an =
1+ x2

4(n− 1
2 )

2
π2

4
�

n− 1
2

�2
π2



Multinomial logit models

Topic models

Autologistic models

Robust regression

Logit models

Extreme-value models

Support vector machines

Restricted Boltzmann machines

Neural networks

Penalized additive models

Student t

Ridge

Lasso

Bridge

Normal/exponential-gamma

Normal/gamma

Generalized-t (double Pareto)

Normal/inverted-beta

Normal/inverse-Gaussian

Meridian filter

The theory of variance-mean mixtures allows MAP estimation for 
arbitrary combinations of model (left) with prior or penalty (right).

With the conjugate-gradient version, there are no matrix inverses 
and no numerical derivatives.



Three papers

“Sparse Bayes estimation in non-Gaussian models via data augmentation.”

“Sparse multinomial logistic regression via nonconcave penalized likelihood.”

“Exact MAP estimation in logistic-normal topic models.”


