Sparse and Smooth: An optimal convex
relaxation for high-dimensional regression

Martin Wainwright

UC Berkeley
Departments of Statistics, and EECS
July 2011

Joint work with Garvesh Raskutti and Bin Yu, UC Berkeley



Non-parametric regression

Goal: How to predict output from covariates?
@ given covariates (z1,%2,%3,...,Tp)
@ output variable y
@ want to predict y based on (z1,...,%p)

Examples: Medical diagnosis; Geostatistics; Astronomy; Video denoising ...
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Goal: How to predict output from covariates?
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output variable y

want to predict y based on (z1, ...

s Tp)

Examples: Medical diagnosis; Geostatistics; Astronomy; Video denoising ...
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High dimensions and sample complexity

Possible models:

P
@ ordinary linear regression: y = Z Oix; +w
j=1
——
(6, z)
@ general non-parametric model: y = f(z1,22,...,2p) +w.

Sample complexity: How many samples n for reliable prediction?

@ linear models
» without any structure: sample size n <  p/e>  necessary /sufficient
~—~

linear in p
» with sparsity s < p: sample size n < (s logp)/e2 necessary /sufficient
—_———

logarithmic in p
@ non-parametric models: p-dimensional, smoothness «
Curse of dimensionality: n = (1/e)*tr/e

Exponential in p



Sparse additive models

o additive models f(x1,x2,...,2p) = Z§:1 fi(x;)
(Stone, 1985; Hastie & Tibshirani, 1990)

@ additivity with sparsity

flx1,z2,...,2p) = Z fi(z;) for unknown subset of cardinality |S| = s
jeS
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Sparse additive models

o additive models f(z1,22,...,2,) = >0, fi(z))
(Stone, 1985; Hastie & Tibshirani, 1990)

@ additivity with sparsity

flx1,z2,...,2p) = Z fi(z;) for unknown subset of cardinality |S| = s
jeS

@ studied by previous authors:

» Lin & Zhang, 2006: COSSO relaxation

Ravikumar et al., 2007: SPAM back-fitting procedure
Meier et al., 2007

Koltchinski & Yuan, 2008, 2010.

vYyy

Martin Wainwright (UC Berkeley) High-dimensional non-parametrics December, 2010 4/ 22



Sparse and smooth

Noisy samples

yi:f*(:rﬂ,:rig,...,xip)eri fori:1,2,...

of unknown function f* with:
@ sparse representation: f* = EjeS 17
@ univariate functions are smooth: f; € H;



Sparse and smooth

Noisy samples

yi:f*(xﬂ,zig,...,xip)eri fori:1,2,...

of unknown function f* with:
@ sparse representation: f* = EjeS 17
@ univariate functions are smooth: f; € H;

@ Disregarding computational cost:

min 1 Z (yi — f(xi))2

min
ISI<s  f=3 f; M4
jes i=1

1i€% 1112



Sparse and smooth

@ Disregarding computational cost:

min min 1 Z (yl — f(:rz))2

IS|<s  f=3 fi N ‘o
j€s =1
ij'Hj

lly=f£I1%,

@ 1-Hilbert-norm as convex surrogate:

P
£l =D il
j=1



Sparse and smooth

@ Disregarding computational cost:

. R 2
min min P — ZX;
S|<s =S £ n Zl (yz f( z))

JjES =
fi€H;

ly—£II2

@ 1-Hilbert-norm as convex surrogate:

P
£l =D il
j=1

@ 1-L5(P,)-norm as convex surrogate:

P
=Y I fill2 e

j=1

where || fjl|72p,) = & 2iey [7(@ij)-

I/




A family of estimators

Noisy samples
yi = (i, Tig, - -+, ip) +w;

of unknown function f* = Zjes fi
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A family of estimators

Noisy samples
yi = [M(@i1, iz, - .o, Tip) + w5 fori=1,2,...,n

of unknown function f* = Zj s fJ’.*.

Estimator:

N . 1 £ e 2 . i
Fears min {57 (= fi(@i)” + pallfllw + sl i |
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A family of estimators

Noisy samples
yi = [M(@i1, iz, - .o, Tip) + w5 fori=1,2,...,n

of unknown function f* =3, ¢ f/.

Estimator:

~ . 1 & u 2 . .
Fearg min {37 (=3 fi@i)" + pull s+ sl Fllin -
f:Zj:1 fi v =il j=1

Two kinds of regularization:

P

P
Il =Y iz, = .
j=1

j=1

p
£l =Y Il fillag, -

j=1



Efficient implementation by kernelization

Representer theorem: Reduces to convex program involving:
o matrix A = (a1, ag,...,q,) € R"*P,
@ empirical kernel matrices [K];e = K (25, 2¢5).
(Kimeldorf & Wahba, 1971)

Original estimator and kernelized form:

. 1 n p p '4
feag min {-> (v - it D1+ o il + 1D 155 llz2en |

f=35-11i i=1 j=1 j=1
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Efficient implementation by kernelization

Representer theorem: Reduces to convex program involving:
o matrix A = (a1, ag,...,q,) € R"*P,
@ empirical kernel matrices [K];e = K (25, 2¢5).

(Kimeldorf & Wahba, 1971)

Original estimator and kernelized form:

R 1 n D P P
f€arg min {ﬁ Z ( Z ﬂfzg | + Pnz ||fJHHJ + an Hfj||L2(IP>,,L) f

f=35-11i i=1 j=1 j=1

o . 1 P 2 ! T . T 172
Ac ais o {EHy— ZlKjaj”Q +pnz:1 Vo Ko +unZI\/Ozj Kjaj}.
j= = j=

Martin Wainwright (UC Berkeley) High-dimensional non-parametrics December, 2010 7/ 22



Example: Polynomial kernels

2nd order polynomial kernel

Polynomial kernel

K(z,z) = (1 + (=, x>)d

Functions in span of data:

Function value

ai(l + (z, xi))d
1

f(2) =]

n
1=

= H H H
—8.5 -0.25 0 0.25 0.5
Design value x
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Example: First-order Sobolev kernel

1st order Sobolev

First-order Sobolev kernel

K(z,2) = min{z,z}

Functions in span of data are Lipschitz:

Function value

f(z) = Z a; min{z, z}
i=1

= H H H
78.5 -0.25 0 0.25 0.5
Design value x
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Mean-squared error

Empirical results: U

nrescaled

MSE versus raw sample size
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Empirical results: Apppropriately rescaled

MSE versus rescaled sample size
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Decay rate of kernel eigenvalues
Mercer’s theorem: orthonormal basis {¢;} and non-negative eigenvalues

{A;} such that

K(z,2) = > Ajd;(2) 6, ().
=1

Key intuition: Decay rate A; — +o0o controls complexity of kernel class.



Decay rate of kernel eigenvalues

Mercer’s theorem: orthonormal basis {¢;} and non-negative eigenvalues
{A;} such that

K(z,2) = > Ajd;(2) 6, ().
=1

Key intuition: Decay rate A; — +o0o controls complexity of kernel class.

Local Rademacher complexity
(Mendelson, 2002)

R (6) = % [imm{xj,az}} "

Example: For Sobolev kernels:
@ First-order (Lipschitz): Aj = (1/9)
@ Second-order (Twice diff’ble): A=< (1/4)2



Achievable results

Model:
9 f* has s < p non-zero components

@ each univariate component f} in same univariate Hilbert space H with
eigenvalues {\;}

@ critical univariate rate J,, determined by solving

1 00 1/2
6% = Rx(6,) = [ min{\;, 52 ]

Theorem (Raskutti, W. & Yu, 2010)

For appropriate choices of reqularization parameters py, ji,, we have

~ N slogp
If—f ||%2(Pn) = 4 562
n ~—

Cost of subset selection Cost of s-variate estimation

with high probability.
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Consequence: Finite-rank kernels

@ a (block) univariate kernel K has rank m if A; = 0 for all j > m.
@ many examples:

» linear function classes in R™
» polynomials of degree d = m — 1 in R

Corollary

For any kernel with rank m, we have we have

o . slogp sm
If—f ||2L2(Pn) ~ nb + 'y
~—— ~~

Cost of subset selection  Cost of s-variate estimation

with high probability.

Note: Either term can dominate, depending on relative scalings of ambient
dimension p and kernel rank m.
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Consequence: Sobolev kernels

@ a univariate Sobolev kernel of smoothness « has eigenvalue decay

Ay = (1/5)°

@ examples:

» o = 1: Lipschitz functions
» o = 2: twice differentiable functions

Corollary

For a Sobolev kernel with smoothness o, we have

~ slogp s
||f—f*||2L?(]1>n) ~ T + e
S~—— &\,_/

Cost of subset selection  Cost of s-variate estimation

with high probability.

Note: Either term can dominate, depending on relative scalings of sample
size n, ambient dimension p and the smoothness a.



Rates from past work

@ Ravikumar et al, 2008:

> “back-fitting” method for sparse additive models
» establish consistency but do not track sparsity s
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Rates from past work

@ Ravikumar et al, 2008:

> “back-fitting” method for sparse additive models
» establish consistency but do not track sparsity s

@ Meier et al., 2008:

» regularize with || f]

n,1:

2
» establish a rate of the order s(lo%) 2a+1 for a-smooth Sobolev spaces

@ Koltchinski & Yuan, 2008:

» regularize with || f{]%,1

» establish rates involving terms at least 3310%

@ Concurrent work: Koltchinski & Yuan, 2010:

» analyze same estimator but under a global boundedness condition
» rates are not minimax-optimal

Martin Wainwright (UC Berkeley High-dimensional non-parametrics December, 2010
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Rates with global boundedness

Koltchinski & Yuan, 2010:

@ analyzed same estimator but under global boundedness:

1o = 1S Filloo = 32U oo < B,

JjeS jES

@ similar rates claimed to be optimal
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Rates with global boundedness

Koltchinski & Yuan, 2010:
@ analyzed same estimator but under global boundedness:
£ oo = 1D Filloe = D Ifflloe < B
JES jES

@ similar rates claimed to be optimal

Proposition (Raskutti, W. & Yu, 2010)
Faster rates are possible under global boundedness conditions. For any
Sobolev kernel with smoothness «,

~ L. s slo s
1F = Bapy 3 0(sm) — + 228@/2)

n2a+1 n

for a function such that ¢(s,n) = o(1) if s == \/n.

December, 2010

High-dimensional non-parametrics
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Information-theoretic lower bounds
Thus far:

@ polynomial-time algorithm based on solving SOCP

@ upper bounds on error that hold w.h.p.

Question: J

But are these “good” results?

Statistical minimax: For a function class F, define the minimax error:

M (Fopa) = ir%ff* sup ||f — £*II3

sHpyx

Lower bounds behavior of any algorithm over class F.
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Function estimation as channel coding

|
) ILJL’ Noisy channel [\

P(y | f*) f
_/'_'

© Nature chooses a function f* from a class F.
© User makes n observations of f* from a noisy channel.

© Function estimation as decoding: return estimate }? based on samples

{(yirzi) Y-

(Hasminskii, 1978, Birge, 1981, Yang & Barron, 1999)



Metric entropy classes
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N(9; F) = smallest # 6-balls needed to cover F




Metric entropy classes
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Covering number

N(9; F) = smallest # 6-balls needed to cover F

© Logarithmic metric entropy
log N(0; F) < m log(1/9)

Examples:
» parametric classes
» finite-rank kernels
» any function class with finite VC dimension



Metric entropy classes

Covering number

N(9; F) = smallest # 6-balls needed to cover F

© Polynomial metric entropy:

Q-

log N(6; F) < (%)

Examples:

» various smoothness classes
» Sobolev classes



Lower bounds on minimax risk

Theorem (Raskutti, W. & Yu, 2009)
Under the same conditions, there is a constant co > 0 such that:

@ For function class F with m-logarithmic metric entropy:

P SD’tn(]:s,p,a) > CO{ ﬂ%p/g T+ 8 (%)

subset sel. s-var. est.

M =172
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Lower bounds on minimax risk

Theorem (Raskutti, W. & Yu, 2009)
Under the same conditions, there is a constant cg > 0 such that:

@ For function class F with m-logarithmic metric entropy:

P[mn(fs,p,a) > CO{ ﬂ%p/g T+ 8 (%) }:| > 1/2

———— ——
subset sel. s-var. est.

© For function class F with a-polynomial metric entropy:

slogp/s 1
P[mtn(fs,p,a) Z CO{ ip/ +s (ﬁ
—— ——

subset sel. s-var. est.

)2
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Summary

@ structure is essential for high-dimensional non-parametric models
@ sparse and smooth additive models:
» convex relaxation based on a composite regularizer
» attains minimax-optimal rates for kernel classes:
* cost of subset selection: s%
* cost of s-variate function estimation: s§2

@ many open questions:

» allowing groupings of variables (doublets, triplets etc.)
» extension to other structured non-parametric models
» trade-offs between computational and statistical efficiency

Pre-print:
Raskutti, Wainwright & Yu, 2010
Minimaz-optimal rates for sparse additive models over kernel classes
Available at http://arxiv.org/abs/1008.3654.
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