Sparse and Smooth: An optimal convex relaxation for high-dimensional regression

Martin Wainwright
UC Berkeley
Departments of Statistics, and EECS
July 2011

Joint work with Garvesh Raskutti and Bin Yu, UC Berkeley

Non-parametric regression

Goal: How to predict output from covariates?

- given covariates $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p}\right)$
- output variable y
- want to predict y based on $\left(x_{1}, \ldots, x_{p}\right)$

Examples: Medical diagnosis; Geostatistics; Astronomy; Video denoising ...

Non-parametric regression

Goal: How to predict output from covariates?

- given covariates $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p}\right)$
- output variable y
- want to predict y based on $\left(x_{1}, \ldots, x_{p}\right)$

Examples: Medical diagnosis; Geostatistics; Astronomy; Video denoising ...

High dimensions and sample complexity

Possible models:

- ordinary linear regression: $y=\underbrace{\sum_{j=1}^{p} \theta_{j} x_{j}}_{\langle\theta, x\rangle}+w$
- general non-parametric model: $y=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)+w$.

High dimensions and sample complexity

Possible models:

- ordinary linear regression: $y=\underbrace{\sum_{j=1}^{p} \theta_{j} x_{j}}_{\langle\theta, x\rangle}+w$
- general non-parametric model: $y=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)+w$.

Sample complexity: How many samples n for reliable prediction?

- linear models
- without any structure: sample size $n \asymp \underbrace{p / \epsilon^{2}}_{\text {linear in } p}$ necessary/sufficient

High dimensions and sample complexity

Possible models:

- ordinary linear regression: $y=\underbrace{\sum_{j=1}^{p} \theta_{j} x_{j}}_{\langle\theta, x\rangle}+w$
- general non-parametric model: $y=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)+w$.

Sample complexity: How many samples n for reliable prediction?

- linear models
- without any structure: sample size $n \asymp \underbrace{p / \epsilon^{2}}_{\text {linear in } p}$ necessary/sufficient
- with sparsity $s \ll p$: sample size $n \asymp \underbrace{(s \log p) / \epsilon^{2}}_{\text {logarithmic in } p}$ necessary/sufficient

High dimensions and sample complexity

Possible models:

- ordinary linear regression: $y=\underbrace{\sum_{j=1}^{p} \theta_{j} x_{j}}_{\langle\theta, x\rangle}+w$
- general non-parametric model: $y=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)+w$.

Sample complexity: How many samples n for reliable prediction?

- linear models
- without any structure: sample size $n \asymp \underbrace{p / \epsilon^{2}}_{\text {linear in } p}$ necessary/sufficient
- with sparsity $s \ll p$: sample size $n \asymp \underbrace{(s \log p) / \epsilon^{2}}_{\text {logarithmic in } p}$ necessary/sufficient
- non-parametric models: p-dimensional, smoothness α

$$
\text { Curse of dimensionality: } \quad n \asymp \underbrace{(1 / \epsilon)^{2+p / \alpha}}_{\text {Exponential in } p}
$$

Sparse additive models

- additive models $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)$
(Stone, 1985; Hastie \& Tibshirani, 1990)
- additivity with sparsity

$$
f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\sum_{j \in S} f_{j}\left(x_{j}\right) \quad \text { for unknown subset of cardinality }|S|=s
$$

Sparse additive models

- additive models $f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)$
(Stone, 1985; Hastie \& Tibshirani, 1990)
- additivity with sparsity
$f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\sum_{j \in S} f_{j}\left(x_{j}\right) \quad$ for unknown subset of cardinality $|S|=s$
- studied by previous authors:
- Lin \& Zhang, 2006: COSSO relaxation
- Ravikumar et al., 2007: SPAM back-fitting procedure
- Meier et al., 2007
- Koltchinski \& Yuan, 2008, 2010.

Sparse and smooth

Noisy samples

$$
y_{i}=f^{*}\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)+w_{i} \quad \text { for } i=1,2, \ldots, n
$$

of unknown function f^{*} with:

- sparse representation: $f^{*}=\sum_{j \in S} f_{j}^{*}$
- univariate functions are smooth: $f_{j} \in \mathcal{H}_{j}$

Sparse and smooth

Noisy samples

$$
y_{i}=f^{*}\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)+w_{i} \quad \text { for } i=1,2, \ldots, n
$$

of unknown function f^{*} with:

- sparse representation: $f^{*}=\sum_{j \in S} f_{j}^{*}$
- univariate functions are smooth: $f_{j} \in \mathcal{H}_{j}$
- Disregarding computational cost:

$$
\min _{|S| \leq s} \min _{\substack{f=\sum_{\begin{subarray}{c}{j \in S \\
f_{j} \in \mathcal{H}_{j}} }} f_{j}}\end{subarray}}^{\|y-f\|_{n}^{2}}
$$

Sparse and smooth

- Disregarding computational cost:

$$
\min _{|S| \leq s} \min _{\substack{f=\sum_{\begin{subarray}{c}{j \in S \\
f_{j} \in \mathcal{H}_{j}} }} f_{j}}\end{subarray}}^{\|y-f\|_{n}^{2}}
$$

- 1-Hilbert-norm as convex surrogate:

$$
\|f\|_{1, \mathcal{H}}:=\sum_{j=1}^{p}\left\|f_{j}\right\|_{\mathcal{H}_{j}}
$$

Sparse and smooth

- Disregarding computational cost:

$$
\min _{|S| \leq s} \min _{\substack{f=\sum_{\begin{subarray}{c}{j \in S \\
f_{j} \in \mathcal{H}_{j}} }} f_{j}}\end{subarray}}^{\|y-f\|_{n}^{2}}
$$

- 1-Hilbert-norm as convex surrogate:

$$
\|f\|_{1, \mathcal{H}}:=\sum_{j=1}^{p}\left\|f_{j}\right\|_{\mathcal{H}_{j}}
$$

- 1- $L_{2}\left(\mathbb{P}_{n}\right)$-norm as convex surrogate:

$$
\|f\|_{1, n}:=\sum_{j=1}^{p}\left\|f_{j}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}
$$

where $\left\|f_{j}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2}:=\frac{1}{n} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}\right)$.

A family of estimators

Noisy samples

$$
y_{i}=f^{*}\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)+w_{i} \quad \text { for } i=1,2, \ldots, n
$$

of unknown function $f^{*}=\sum_{j \in S} f_{j}^{*}$.

A family of estimators

Noisy samples

$$
y_{i}=f^{*}\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)+w_{i} \quad \text { for } i=1,2, \ldots, n
$$

of unknown function $f^{*}=\sum_{j \in S} f_{j}^{*}$.

Estimator:

$$
\widehat{f} \in \arg \min _{f=\sum_{j=1}^{p} f_{j}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)\right)^{2}+\rho_{n}\|f\|_{1, \mathcal{H}}+\mu_{n}\|f\|_{1, n}\right\} .
$$

A family of estimators

Noisy samples

$$
y_{i}=f^{*}\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)+w_{i} \quad \text { for } i=1,2, \ldots, n
$$

of unknown function $f^{*}=\sum_{j \in S} f_{j}^{*}$.

Estimator:

$$
\widehat{f} \in \arg \min _{f=\sum_{j=1}^{p} f_{j}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)\right)^{2}+\rho_{n}\|f\|_{1, \mathcal{H}}+\mu_{n}\|f\|_{1, n}\right\} .
$$

Two kinds of regularization:

$$
\begin{aligned}
\|f\|_{1, n} & =\sum_{j=1}^{p}\left\|f_{j}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}=\sum_{j=1}^{p} \sqrt{\frac{1}{n} \sum_{i=1}^{n} f_{j}^{2}\left(x_{i j}\right)}, \quad \text { and } \\
\|f\|_{1, \mathcal{H}} & =\sum_{j=1}^{p}\left\|f_{j}\right\|_{\mathcal{H}_{j}} .
\end{aligned}
$$

Efficient implementation by kernelization

Representer theorem: Reduces to convex program involving:

- matrix $A=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \in \mathbb{R}^{n \times p}$.
- empirical kernel matrices $\left[K_{j}\right]_{i \ell}=\mathbb{K}_{j}\left(x_{i j}, x_{\ell j}\right)$.
(Kimeldorf \& Wahba, 1971)
Original estimator and kernelized form:
$\widehat{f} \in \arg \min _{f=\sum_{j=1}^{p} f_{j}}\left\{\left.\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)\right)^{2} \right\rvert\,+\rho_{n} \sum_{j=1}^{p}\left\|f_{j}\right\|_{\mathcal{H}_{j}}+\mu_{n} \sum_{j=1}^{p}\left\|f_{j}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}\right\}$

Efficient implementation by kernelization

Representer theorem: Reduces to convex program involving:

- matrix $A=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \in \mathbb{R}^{n \times p}$.
- empirical kernel matrices $\left[K_{j}\right]_{i \ell}=\mathbb{K}_{j}\left(x_{i j}, x_{\ell j}\right)$.
(Kimeldorf \& Wahba, 1971)
Original estimator and kernelized form:
$\widehat{f} \in \arg \min _{f=\sum_{j=1}^{p} f_{j}}\left\{\left.\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} f_{j}\left(x_{i j}\right)\right)^{2} \right\rvert\,+\rho_{n} \sum_{j=1}^{p}\left\|f_{j}\right\|_{\mathcal{H}_{j}}+\mu_{n} \sum_{j=1}^{p}\left\|f_{j}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}\right\}$
$\widehat{A} \in \arg \min _{A \in \mathbb{R}^{n \times p}}\left\{\frac{1}{n}\left\|y-\sum_{j=1}^{p} K_{j} \alpha_{j}\right\|_{2}^{2}+\rho_{n} \sum_{j=1}^{p} \sqrt{\alpha_{j}^{T} K_{j} \alpha_{j}}+\mu_{n} \sum_{j=1}^{p} \sqrt{\alpha_{j}^{T} K_{j}^{2} \alpha_{j}}\right\}$.

Example: Polynomial kernels

Polynomial kernel

$$
\mathbb{K}(z, x)=(1+\langle z, x\rangle)^{d}
$$

Functions in span of data:

$$
f(z)=\sum_{i=1}^{n} \alpha_{i}\left(1+\left\langle z, x_{i}\right\rangle\right)^{d}
$$

Example: First-order Sobolev kernel

First-order Sobolev kernel

$$
\mathbb{K}(z, x)=\min \{z, x\}
$$

Functions in span of data are Lipschitz:

$$
f(z)=\sum_{i=1}^{n} \alpha_{i} \min \{z, x\}
$$

Empirical results: Unrescaled

Empirical results: Apppropriately rescaled

Decay rate of kernel eigenvalues

Mercer's theorem: orthonormal basis $\left\{\phi_{j}\right\}$ and non-negative eigenvalues $\left\{\lambda_{j}\right\}$ such that

$$
\mathbb{K}(z, x)=\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(z) \phi_{j}(x)
$$

Key intuition: Decay rate $\lambda_{j} \rightarrow+\infty$ controls complexity of kernel class.

Decay rate of kernel eigenvalues

Mercer's theorem: orthonormal basis $\left\{\phi_{j}\right\}$ and non-negative eigenvalues $\left\{\lambda_{j}\right\}$ such that

$$
\mathbb{K}(z, x)=\sum_{j=1}^{\infty} \lambda_{j} \phi_{j}(z) \phi_{j}(x)
$$

Key intuition: Decay rate $\lambda_{j} \rightarrow+\infty$ controls complexity of kernel class.

Local Rademacher complexity

(Mendelson, 2002)

$$
\mathcal{R}_{\mathbb{K}}(\delta):=\frac{1}{\sqrt{n}}\left[\sum_{j=1}^{\infty} \min \left\{\lambda_{j}, \delta^{2}\right\}\right]^{1 / 2}
$$

Example: For Sobolev kernels:

- First-order (Lipschitz): $\quad \lambda_{j} \asymp(1 / j)$
- Second-order (Twice diff'ble): $\quad \lambda_{j} \asymp(1 / j)^{2}$

Achievable results

Model:

- f^{*} has $s \ll p$ non-zero components
- each univariate component f_{j}^{*} in same univariate Hilbert space \mathcal{H} with eigenvalues $\left\{\lambda_{j}\right\}$
- critical univariate rate δ_{n} determined by solving

$$
\delta^{2} \asymp \mathcal{R}_{\mathbb{K}}\left(\delta_{n}\right)=\frac{1}{\sqrt{n}}\left[\sum_{j=1}^{\infty} \min \left\{\lambda_{j}, \delta^{2}\right\}\right]^{1 / 2}
$$

Theorem (Raskutti, W. \& Yu, 2010)

For appropriate choices of regularization parameters ρ_{n}, μ_{n}, we have

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2} \precsim \underbrace{\frac{s \log p}{n}}_{\text {Cost of subset selection }}+\underbrace{s \delta_{n}^{2}}_{\text {Cost of s-variate estimation }}
$$

with high probability.

Consequence: Finite-rank kernels

- a (block) univariate kernel \mathbb{K} has rank m if $\lambda_{j}=0$ for all $j>m$.
- many examples:
- linear function classes in \mathbb{R}^{m}
- polynomials of degree $d=m-1$ in \mathbb{R}

Consequence: Finite-rank kernels

- a (block) univariate kernel \mathbb{K} has rank m if $\lambda_{j}=0$ for all $j>m$.
- many examples:
- linear function classes in \mathbb{R}^{m}
- polynomials of degree $d=m-1$ in \mathbb{R}

Corollary

For any kernel with rank m, we have we have

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2} \precsim \underbrace{\frac{s \log p}{n}}_{\text {Cost of subset selection }}+\underbrace{\frac{s m}{n}}_{\text {Cost of s-variate estimation }}
$$

with high probability.

Consequence: Finite-rank kernels

- a (block) univariate kernel \mathbb{K} has rank m if $\lambda_{j}=0$ for all $j>m$.
- many examples:
- linear function classes in \mathbb{R}^{m}
- polynomials of degree $d=m-1$ in \mathbb{R}

Corollary

For any kernel with rank m, we have we have

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2} \precsim \underbrace{\frac{s \log p}{n}}_{\text {Cost of subset selection }}+\underbrace{\frac{s m}{n}}_{\text {Cost of s-variate estimation }}
$$

with high probability.

Note: Either term can dominate, depending on relative scalings of ambient dimension p and kernel rank m.

Consequence: Sobolev kernels

- a univariate Sobolev kernel of smoothness α has eigenvalue decay

$$
\lambda_{j} \asymp(1 / j)^{\alpha}
$$

- examples:
- $\alpha=1$: Lipschitz functions
- $\alpha=2$: twice differentiable functions

Consequence: Sobolev kernels

- a univariate Sobolev kernel of smoothness α has eigenvalue decay

$$
\lambda_{j} \asymp(1 / j)^{\alpha}
$$

- examples:
- $\alpha=1$: Lipschitz functions
- $\alpha=2$: twice differentiable functions

Corollary

For a Sobolev kernel with smoothness α, we have

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2} \precsim \underbrace{\frac{s \log p}{n}}_{\text {Cost of subset selection }}+\underbrace{\frac{s}{n^{2 \alpha+1}}}_{\text {Cost of s-variate estimation }}
$$

with high probability.

Consequence: Sobolev kernels

- a univariate Sobolev kernel of smoothness α has eigenvalue decay

$$
\lambda_{j} \asymp(1 / j)^{\alpha}
$$

- examples:
- $\alpha=1$: Lipschitz functions
- $\alpha=2$: twice differentiable functions

Corollary

For a Sobolev kernel with smoothness α, we have

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2} \precsim \underbrace{\frac{s \log p}{n}}_{\text {Cost of subset selection }}+\underbrace{\frac{s}{n^{\frac{2 \alpha}{2 \alpha+1}}}}_{\text {Cost of s-variate estimation }}
$$

with high probability.

Note: Either term can dominate, depending on relative scalings of sample size n, ambient dimension p and the smoothness α.

Rates from past work

- Ravikumar et al, 2008:
- "back-fitting" method for sparse additive models
- establish consistency but do not track sparsity s

Rates from past work

- Ravikumar et al, 2008:
- "back-fitting" method for sparse additive models
- establish consistency but do not track sparsity s
- Meier et al., 2008:
- regularize with $\|f\|_{n, 1}$:
- establish a rate of the order $s\left(\frac{\log p}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}$ for α-smooth Sobolev spaces

Rates from past work

- Ravikumar et al, 2008:
- "back-fitting" method for sparse additive models
- establish consistency but do not track sparsity s
- Meier et al., 2008:
- regularize with $\|f\|_{n, 1}$:
- establish a rate of the order $s\left(\frac{\log p}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}$ for α-smooth Sobolev spaces
- Koltchinski \& Yuan, 2008:
- regularize with $\|f\|_{\mathcal{H}, 1}$
- establish rates involving terms at least $s^{3} \frac{\log p}{n}$

Rates from past work

- Ravikumar et al, 2008:
- "back-fitting" method for sparse additive models
- establish consistency but do not track sparsity s
- Meier et al., 2008:
- regularize with $\|f\|_{n, 1}$:
- establish a rate of the order $s\left(\frac{\log p}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}$ for α-smooth Sobolev spaces
- Koltchinski \& Yuan, 2008:
- regularize with $\|f\|_{\mathcal{H}, 1}$
- establish rates involving terms at least $s^{3} \frac{\log p}{n}$
- Concurrent work: Koltchinski \& Yuan, 2010:
- analyze same estimator but under a global boundedness condition
- rates are not minimax-optimal

Rates with global boundedness

Koltchinski \& Yuan, 2010:

- analyzed same estimator but under global boundedness:

$$
\left\|f^{*}\right\|_{\infty}=\left\|\sum_{j \in S} f_{j}^{*}\right\|_{\infty}=\sum_{j \in S}\left\|f_{j}^{*}\right\|_{\infty} \leq B .
$$

- similar rates claimed to be optimal

Rates with global boundedness

Koltchinski \& Yuan, 2010:

- analyzed same estimator but under global boundedness:

$$
\left\|f^{*}\right\|_{\infty}=\left\|\sum_{j \in S} f_{j}^{*}\right\|_{\infty}=\sum_{j \in S}\left\|f_{j}^{*}\right\|_{\infty} \leq B .
$$

- similar rates claimed to be optimal

Proposition (Raskutti, W. \& Yu, 2010)

Faster rates are possible under global boundedness conditions. For any Sobolev kernel with smoothness α,

$$
\left\|\widehat{f}-f^{*}\right\|_{L^{2}\left(\mathbb{P}_{n}\right)}^{2} \precsim \phi(s, n) \frac{s}{n^{\frac{2 \alpha}{2 \alpha+1}}}+\frac{s \log (p / s)}{n}
$$

for a function such that $\phi(s, n)=o(1)$ if $s \succsim \sqrt{n}$.

Information-theoretic lower bounds

Thus far:

- polynomial-time algorithm based on solving SOCP
- upper bounds on error that hold w.h.p.

Question:

But are these "good" results?

Statistical minimax: For a function class \mathcal{F}, define the minimax error:

$$
\mathfrak{M}_{n}\left(\mathcal{F}_{s, p, \alpha}\right):=\inf _{\widehat{f}} \sup _{f^{*} \in \mathcal{F}_{s, p, \alpha}}\left\|\widehat{f}-f^{*}\right\|_{2}^{2}
$$

Lower bounds behavior of any algorithm over class \mathcal{F}.

Function estimation as channel coding

(1) Nature chooses a function f^{*} from a class \mathcal{F}.
(2) User makes n observations of f^{*} from a noisy channel.
(3) Function estimation as decoding: return estimate \widehat{f} based on samples $\left\{\left(y_{i}, x_{i}\right)\right\}_{i=1}^{n}$.

Metric entropy classes

Covering number
$N(\delta ; \mathcal{F})=$ smallest $\# \delta$-balls needed to cover \mathcal{F}

Metric entropy classes

Covering number
$N(\delta ; \mathcal{F})=$ smallest $\# \delta$-balls needed to cover \mathcal{F}

(1) Logarithmic metric entropy

$$
\log N(\delta ; \mathcal{F}) \asymp m \log (1 / \delta)
$$

Examples:

- parametric classes
- finite-rank kernels
- any function class with finite VC dimension

Metric entropy classes

Covering number
$N(\delta ; \mathcal{F})=$ smallest $\# \delta$-balls needed to cover \mathcal{F}

(1) Polynomial metric entropy:

$$
\log N(\delta ; \mathcal{F}) \asymp\left(\frac{1}{\delta}\right)^{\frac{1}{\alpha}}
$$

Examples:

- various smoothness classes
- Sobolev classes

Lower bounds on minimax risk

Theorem (Raskutti, W. \& Yu, 2009)
Under the same conditions, there is a constant $c_{0}>0$ such that:
(1) For function class \mathcal{F} with m-logarithmic metric entropy:

$$
\mathbb{P}[\mathfrak{M}_{n}\left(\mathcal{F}_{s, p, \alpha}\right) \geq c_{0}\{\underbrace{\frac{s \log p / s}{n}}_{\text {subset sel. }}+\underbrace{s\left(\frac{m}{n}\right)}_{\text {s-var. est. }}\}] \geq 1 / 2 .
$$

Lower bounds on minimax risk

Theorem (Raskutti, W. \& Yu, 2009)
Under the same conditions, there is a constant $c_{0}>0$ such that:
(1) For function class \mathcal{F} with m-logarithmic metric entropy:

$$
\mathbb{P}[\mathfrak{M}_{n}\left(\mathcal{F}_{s, p, \alpha}\right) \geq c_{0}\{\underbrace{\frac{s \log p / s}{n}}_{\text {subset sel. }}+\underbrace{s\left(\frac{m}{n}\right)}_{\text {s-var. est. }}\}] \geq 1 / 2 .
$$

(2) For function class \mathcal{F} with α-polynomial metric entropy:

$$
\mathbb{P}[\mathfrak{M}_{n}\left(\mathcal{F}_{s, p, \alpha}\right) \geq c_{0}\{\underbrace{\frac{s \log p / s}{n}}_{\text {subset sel. }}+\underbrace{s\left(\frac{1}{n}\right)^{\frac{2 \alpha}{2 \alpha+1}}}_{\text {s-var. est. }}\}] \geq 1 / 2 .
$$

Summary

- structure is essential for high-dimensional non-parametric models
- sparse and smooth additive models:
- convex relaxation based on a composite regularizer
- attains minimax-optimal rates for kernel classes:
\star cost of subset selection: $s \frac{\log p / s}{n}$
\star cost of s-variate function estimation: $s \delta_{n}^{2}$
- many open questions:
- allowing groupings of variables (doublets, triplets etc.)
- extension to other structured non-parametric models
- trade-offs between computational and statistical efficiency

Pre-print:
Raskutti, Wainwright \& Yu, 2010
Minimax-optimal rates for sparse additive models over kernel classes
Available at http://arxiv.org/abs/1008.3654.

