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Linear Inverse Problems 

compressive sensing   non-adaptive measurements 
machine learning    dictionary of features 
communications    MIMO user detection 
theoretical computer science  sketching matrix / expander 



Linear Inverse Problems 

•  Challenge:   



Approaches 

      Deterministic        Probabilistic 

Prior    sparsity 
            

Metric               likelihood/ 
       
 posterior  



A Deterministic View 
(with a Model-based CS Flavor) 



•  Sparse signal:   only K out of N coordinates nonzero 
–  model:  union of all K-dimensional subspaces 

  aligned w/ coordinate axes 

    Example:  2-sparse in 3-dimensions 

A Signal Prior 

support: 



Importance of Geometry 



•  A subtle issue 

Importance of Geometry 

2 solutions! 

Which one is correct? 
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Combinatorial    Geometric Probabilistic 

Encoding non-convex  
union-of-subspaces 

atomic norm / 
convex relaxation 

compressible / 
sparse priors 

Example 

Algorithm IHT, CoSaMP, SP, ALPS, 
OMP… 

Basis pursuit, Lasso, 
basis pursuit denoising… 

Variational Bayes, EP, 
Approximate message 
passing (AMP)… 

Sparse Recovery Algorithms 

     

http://lions.epfl.ch/ALPS 
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The Clash Operator 



A Tale of Two Algorithms 

•  Soft thresholding 
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A Tale of Two Algorithms 

•  Soft thresholding 

Key actor: “least absolute shrinkage” 

Bregman distance 

majorization-minimization 



A Tale of Two Algorithms 

•  Soft thresholding 

Bregman distance 

slower 



A Tale of Two Algorithms 

•  Soft thresholding 

•  Is x* what we are  
looking for?  

 local “unverifiable” 
assumptions: 

–  ERC/URC condition 

–  compatibility condition … 

(local  global / dual certification / random signal models) 



A Tale of Two Algorithms 

•  Hard thresholding 

Key actor: “hard thresholding” 
ALGO: sort and pick the largest K  



A Tale of Two Algorithms 

•  Hard thresholding 

percolations 

What could possibly go wrong with this naïve approach? 



A Tale of Two Algorithms 

•  Hard thresholding 

 we can tiptoe among percolations! 

another variant has 

Global “unverifiable” assumption: 

GraDes: 

RIP condition 



A Model-based CS Algorithm 

•  Model-based hard thresholding 

Global “unverifiable” assumption: 

Key actor: combinatorial selection 



Tree-Sparse 

•  Model:  K-sparse coefficients  
+  significant coefficients  

 lie on a rooted subtree 

•  Sparse approx:      find best set of coefficients 

–  sorting 
–  hard thresholding 

•  Tree-sparse approx:   find best rooted subtree  
        of coefficients  

–  condensing sort and select  [Baraniuk] 

–  dynamic programming  [Donoho] 



Model CS in Context  

•  Basis pursuit and Lasso 

exploit geometry  <>  interplay of  

arbitrary selection  <>  difficulty of interpretation 

  cannot leverage further structure 

•  Structured-sparsity inducing norms 
“customize” geometry  <>  “mixing” of norms over groups / 

   Lovasz extension of submodular 
  set functions 

   inexact selections 

•  Model CS / structured-sparsity via OMP  

exploit combinatorics  <>  exact selections 

   cannot leverage geometry 

for selection 
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  cannot leverage further structure 

•  Structured-sparsity inducing norms 
“customize” geometry  <>  “mixing” of norms over groups / 

   Lovasz extension of submodular 
  set functions 

   inexact selections 

•  Model CS / structured-sparsity via OMP  

exploit combinatorics  <>  exact selections 

    cannot leverage geometry 

for selection 

Or, can it? 



Enter  
CLASH 

http://lions.epfl.ch/CLASH 



CLASH Pseudocode 

•  Algorithm code  @    http://lions.epfl.ch/CLASH 

–  Active set expansion 

–  Greedy descend 

–  Combinatorial selection 

–  Least absolute shrinkage 

–  De-bias with convex  
constraint 

& 

Minimum 1-norm solution still makes sense! 



Geometry of CLASH 

 combinatorial selection 
  + 

least absolute shrinkage  



Geometry of CLASH 

 combinatorial selection 
  + 

least absolute shrinkage  

combinatorial origami 



Combinatorial Selection 

•  A different view of the model-CS workhorse 

(Lemma) support of the solution  <>  modular approximation 
      problem 

where     

   

indexing set 



PMAP 

•  An algorithmic generalization of union-of-subspaces 

Polynomial time modular epsilon-approximation property:   

•  Sets with PMAP-0 

–  Matroids 
 uniform matroids  <>  regular sparsity 
 partition matroids  <>  block sparsity (disjoint groups) 
 cographic matroids  <>  rooted connected tree 
     group adapted hull model 

–  Totally unimodular systems 
 mutual exclusivity  <>  neuronal spike model 
 interval constraints  <>  sparsity within groups 

Model-CS is applicable for all these cases! 



PMAP 

•  An algorithmic generalization of union-of-subspaces 

Polynomial time modular epsilon-approximation property:    

•  Sets with PMAP-epsilon 

–  Knapsack 

multi-knapsack constraints 

weighted multi-knapsack 

quadratic knapsack (?) 

–  Define algorithmically! 

…  

selector 
variables 



PMAP 

•  An algorithmic generalization of union-of-subspaces 

Polynomial time modular epsilon-approximation property:   

•  Sets with PMAP-epsilon 

–  Knapsack 

–  Define algorithmically! 

•  Sets with PMAP-??? 

–  pairwise overlapping groups  <>  mincut with 
       
 cardinality constraint 



CLASH Approximation Guarantees 

•  (Theorem) PMAP / downward compatibility  

–  precise formulae are in the paper 

 http://lions.epfl.ch/CLASH 

•  Isometry requirement (PMAP-0)  <>   



Examples 

Model: (K,C)-clustered model 

O(KCN) – per iteration 

~10-15 iterations 

Model: partition model / TU 

LP – per iteration 

~20-25 iterations 

sparse matrix 



Examples 

CCD array readout via noiselets 



Examples 



Examples 
%       |-------g17-------|        |------------g18-----------|--g19---| 
%       ----------------------------------------------------------------------- 
%  x =  |   g1   |   g2   |   g3   |   g4   |   g5   |   g6   |   g7   |  g8  | 
%       ----------------------------------------------------------------------- 
% 
%              |---g19---|---g19---|       |--g20--|       |--g20--| 
%     --------------------------------------------------------------------- 
% ... |   g9   |   g10   |   g11   |  g12  |  g13  |  g14  |  g15  | g16  | 
%     --------------------------------------------------------------------- 

g1 + g2 + g17  <= 1   
g4 + g5 + g6 + g18      <= 1 
g7 + g10 + g11 + g19  <= 1             
g13 + g15 + g20  <= 1     
… (more constraints with random weights) 



Conclusions 

•  CLASH  <>  combinatorial selection
    +   
      convex geometry 

       λ→∞ ⇒ model-CS   

•  PMAP-epsilon  <>  inherent difficulty in  
  combinatorial selection 

–  beyond simple selection towards    provable solution quality 
     + 

       runtime/space bounds   

–  algorithmic definition of sparsity  +  many models   
    matroids, TU, knapsack,… 

•  Other norms / constraints  <>  TV-norm,… 



•  Postdoc positions @ LIONS / EPFL   
                               contact: volkan.cevher@epfl.ch 

   


