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Sampling correlated signals

@ Goal: acquire an ensemble of M signals
e Bandlimited to /2

o “Correlated” — M signals are ~ linear combinations of R signals



Sampling correlated signals
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@ Goal: acquire an ensemble of M signals

e Bandlimited to /2
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o “Correlated” — M signals are ~ linear combinations of R signals



Sensor arrays




Framework

@ “Wired" local arrays that may or may not share a (multiplexed) ADC

@ Sparsity has nothing to do with it (but makes a guest appearance...)
e Correlation structure is unknown (low-rank recovery problem)
@ Interested in systems with clear “implementation potential”



Components

@ Analog vector-matrix multiplier spreads energy across channels
@ Modulators spread energy across frequency
o Filters spread energy in one channel across time

@ We will use both uniform and non-uniform ADCs



Known correlation structure — whiten then sample
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@ Suppose the “mixing matrix” A is known and has SVD

A= U [Z

[VT

then an efficient sampling structure is to “whiten” with UT, then

sample



Known correlation structure — whiten then sample
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@ Requires R ADCs and a total of RW samples

@ Recover samples of original using X = UY



Sampling correlated signals
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Sampling correlated signals
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o Bandlimited = this is just a low-rank recovery problem

@ Sampling each channel separately takes MW total samples,
we want strategies that take ~ RW total samples



Low-rank matrix recovery

@ Given p linear samples of a matrix,
y=AXo), y€eRP, XgoeRMW

we solve
m)én X[« subjectto AX)=1y

where || X]|, is the nuclear norm: the sum of the singular values of X.

@ An “optimal” sampler A would (stably) recover Xg from y when

#samples 2 R - max(M, W)
2 RW  (in our case)



Architecture 1: One non-uniform ADC per channel
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@ M individual nonuniform-ADCs with average rate 0

@ Same as choosing M6 random samples from M x W matrix



Matrix completion

@ Results of Candes, Recht, Tao, Keshavan, Montenari, Oh, Plan, ... =

Given a small number of entries in a low-rank matrix,
we can “fill in” the missing entries



Matrix completion

@ Results of Candes, Recht, Tao, Keshavan, Montenari, Oh, Plan, ... =

Given a small number of entries in a low-rank matrix,
we can “fill in” the missing entries

@ Recht '09: Suppose M x W matrix X = UXVT is rank R with

MW
||UvTuio)

M %4
[ = max (R mZaX ||UTeiH§a 7 mZaX ||VTei||g, =

then we can recover X whp from randomly chosen samples when
#samples > Const - y - RW log?(W)

using nuclear norm minimization



Architecture 1: One non-uniform ADC per channel
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@ Direct application of these results: we can recover “incoherent”
ensembles when

total samples = M@ > Const. - RW - log?(W)

so we can take 6 ~ %W instead of W.
@ Incoherent =
signal energy is spread out evenly across time and channels



Architecture 1: One non-uniform ADC per channel
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Drawbacks:
@ Incoherence assumptions (not universal)

@ Requires M ADCs (time-multiplexing would be delicate...)



Spreading the signals out

X =UxVT

@ Take A M x M and orthogonal,
H = circ(h[n]) orthogonal:

H =FHAF, A =diag({\}), || =1
then

X=UxvT = X=UxVH U=AU, V=HV



Architecture 2: Pre-mix + prefilter + non-uniform ADCs
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@ We can recover the ensemble X when
total samples > RW log*(W)
e From X, we recover X using
X = ATXH

@ Universal, but still using an ADC for every channel...



Multiplexing onto one channel

@ We can always combine M channels into 1 by multiplexing in either
time or frequency

Frequency multiplexer:

modulator e ADC
cos(Wt) rate 3W
modulator
cos(2Wt

@ Replace M ADCs running at rate W with 1 ADC at rate MW




Architecture 3: modulated multiplexing
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o If the signals are spread out uniformly in time, then the ADC and
modulators can run at rate

© > RWlog®2(MW)

@ This requires a (milder) “incoherence across time" assumption



Architecture 4: prefilter + modulated multiplexing
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o Prefiltering spreads signals out over time (low-bandwidth filters)

modulator
code pys

rate @

@ Modulate and sum diversifies and then combines the channels

@ We use one standard ADC operating at rate ¢ (modulation rate is the
same as the ADC sample rate)

@ How big does ¢ need to be to recover X7



Architecture 4: prefilter + modulated multiplexing
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Matrix formulation

Yy = [Hl H2 H3 HM] PVGC(X)
(¢ X @M random matrix)(samples of X at rate ¢)

We have structured random linear measurements of a rank R matrix...



Compressive multiplexing theory

@ Recht et al '07:
Recovery is possible given the matrix-RIP:

A=0IX[E < MX)E < 1 +0)IX[F, X :rank(X) < 2R,



Compressive multiplexing theory

@ Recht et al '07 Candes and Plan '09
The mRIP can follow from a certain concentration bound.

If for any fixed M x W matrix X and some 0 <t < 1 we have
_P
P{|IAX)3 — IX[F| > tIX|F} < Cew,

then § < .307 for
p 2 nRW



Compressive multiplexing theory

@ Krahmer and Ward '10:
Modulating columns of a sparse-RIP matrix yields concentration.

Suppose @ satisfies
1=9)xl3 < [@x]3 < A+9)x|3 V K-sparse x.

Set ® = ®P. Then there is a t < 1 s.t. for any fixed x

P {[[19"x]I3 — IIx]13| > tlx[3} < Ce /e



Compressive multiplexing theory

e R'09:
Concatenated random Toeplitz matrices obey a sparse-RIP.

Take
®=[H; Hy -~ Hy]

then with high probability
1=} < 1®x]3 < (1+d)|x[3 V K-sparse x

when
¢ 2 K -log'(oM)



Architecture 4: prefilter + modulated multiplexing
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@ We can stably recover a rank-R ensemble X when the modulators
and ADC operate at rate

@ > RW log*(MW)

@ This architecture is universal in that it works for any low-rank
correlation structure



Numerical experiments

A few data points form a rough idea of how this works in practice:

MxW R | sample threshold factor above RW

A2 | 300 x 1000 5 18400 3.68
300 x 1000 7 20800 2.97

A3 | 400 x 1000 2 7600 3.8
400 x 1000 4 10680 2.67
400 x 1000 7 14000 2

A4 | 100 x 1000 4 6600 1.65
100 x 1000 7 10000 1.43
300 x 1000 5 13000 2.6
300 x 1000 7 14500 2.07

A2 is non-uniform sampling (matrix samples)
A3 is modulated multiplexing
A4 is prefilter+modulated multiplexing



Summary

@ We saw several compressive sampling architectures for acquiring
ensembles of correlated signals where the total number of samples we

take scales like
(bandwidth) x (rank)

(to within log factors)
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