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Processing Signals on Graphs
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Processing Signals on Graphs
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Short outline

e Summary of one wavelet construction on graphs

- multiscale, fi

* Pyramidal a

tering

gorithms

- polyphase components and downsampling

- the Laplacian Pyramid

- 2-channels, critically sampled filter banks 7
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

Dilation operates through operator: T, = g(tL)
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

Dilation operates through operator: T, = g(tL)

Translation (localization):

Define ¢ ; = T;5j response to a delta at vertex j
N-1

Vi, (1) = g(tAe) 9 (1) be(i)  LPe(F) = Mede()
=0 Ut o) :/Rdwzz(tw)ejwaejw“
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Spectral Graph Wavelets

G=(F,V) a weighted undirected graph, with Laplacian L =D — A

Dilation operates through operator: T, = g(tL)

Translation (localization):

Define ¢ ; = T;5j response to a delta at vertex j
N-1

(1) = D> gEAe)@p(9)ee(i)  LPe(f) = Aede(J)
= Ut o) :/dwﬂ(tw)e_jwaejw“
R
And so formally define the graph wavelet coefficients of f:

N—1

Wi(t,5) = (e, f) Wit j) =TLF() =) g(the) f(£)pe(5)
=0
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Frames

1A, B >0, dh : Ry — Ry (i.e. scaling function)
0<A < h*(u) + >, g(tsu)* < B < o©

/ A

scaling function wavelets

B 1
A simple way to get a tight frame: % A *
Ldt o, )
YA = [ =g () === g(Ae) = V(o) = 7(2)0)

1/2

for any admissible kernel g
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Scaling & Localization
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Scaling & Localization
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FExample

Sensing and Analysis of High-D Data .(I)ﬂ.
Duke University July 2011 COLE OLYTECHNIQUE




FExample
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FExample
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Sparsity

and Smoothness on Graphs

48
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Remark on Implementation

Not necessary to compute spectral decomposition for filtering

K—1
Polynomial approximation : g(tw) ~ Z ar(t)pr(w)

k=0 ..
| ex: Chebyshev, minimax

It is to implement any Fourier
multiplier

0

0 N 40

Then wavelet operator expressed with _ _‘acian:

K—-1
T; ~ Z ak(t)[,k
k=0

And use sparsity of Laplacian in an iterative way
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Remark on Implementation

Wit 5) = (p(£)f7), Wi (t, ) — We(t,j)| < Bl f]

sup norm control (minimax or Chebyshef’

To(L)f = (L — as) (Tro1 (L)) — Th_sa(L)f

aq

Computational cost dominated by matrix-vector multiply with

(sparse) Laplaciary matrix.

In particular O(Z M, |E|)
n=1 http://wiki.epfl.ch /sgwt

Note: “same” algorithm for adjoint !
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Graph wavelets

* Redundancy breaks sparsity

- can we remove some or all of it ?

e Faster algorithms
- traditional wavelets have fast filter banks implementation
- whatever scale, you use the same filters

- here: large scales -> more computations

e Goal: solve both problems at one
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Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)

Down and Up sampling
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Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)

4
4
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Down and Up sampling
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12

Basic Ingredients

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Fﬂtermg is fine but how do we downsample on graphs 777
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Basic Ingredients

Subsampling is equivallent to splitting in two cosets (even, odd)

00000000
10X 10X 10X IO
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Basic Ingredients

Subsampling is equivallent to splitting in two cosets (even, odd)

00000000
10X 10X 10X IO

Questions: How do we partition a graph into meaningful cosets 7
Are there efficient algorithms for these partitions 7
Are there theoretical guarantees 7

How do we define a new graph from the cosets 7
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Cosets - A spectral view

Subsampling is equivallent to splitting in two cosets (even, odd)

00000000
10X 10X 10X IO

Classically, selecting a coset can be interpreted easily in Fourier:

fan (i) = 5 £ (i) (1 + cos(mi))

eigenvector of

largest eigenvalue

Sensing and Analysis of High-D Data .(l)ﬂ-
Duke University July 2011 ECOLE MOLYTECHNIQUE

FEDERALE DE LAUSANNE




15

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have

same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally | V] !

Nodal domains of Laplacian eigenvectors are special (and well studied)
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Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have

same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally | V] !

Nodal domains of Laplacian eigenvectors are special (and well studied)

Theorem: the number of nodal domains associated to the largest

laplacian eigenvector of a connected graph is maximal,

V(Pmax) = V(G) = |V
IFF G is bipartite

In general: v(G) = |V| — x(G) + 2 (extreme cases: bipartite and complete graphs)

Sensing and Analysis of High-D Data .(l)ﬂ.
Duke University J U_ly 2011 ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE




16

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have

same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally | V] !

Nodal domains of Laplacian eigenvectors are special (and well studied)

For any connected graph we will thus naturally define cosets

and their associated selection functions

V_|_ — {Z cV s.t. ¢N_1(’i) > O} V_ = {Z c V s.t. ¢N—1(i) < O}
Mo (3) = £ (1 + sga(on—1(0) M_(i) = 5 (1~ san(6y-1(0))
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Examples of cosets

17

Simple line graph 000000600

o (u) = sin(mku/n + 7w/2n) A = 2 — 2cos(mwk/n)

1< k<n
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Examples of cosets

Simple linegraph @ @ 0 0 0 00O 0000000

¢ (u) = sin(wku/n + 7/2n) A = 2 — 2cos(mwk/n) 1<k<n
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Examples of cosets

Simple linegraph @ @ 0 0 0 00O 0000000

..... ® .
Simple ring graph o .
e o
e _.©
..-
o1 (u) = sin(2mku/n) o7 (u) = cos(2mku/n) 1<k< n/2

A = 2 — 2cos(2nwk/n)
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Examples of cosets

Simple linegraph @ @ 0 0 0 00O 0000000

..... o ®
Simple ring graph . . O O
® ® ® o
e _.© O O
‘@ °
Op(u) = sin(2mku/n) o7 (u) = cos(2mku/n) 1<k <n/2

A = 2 — 2cos(2nwk/n)
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Examples of cosets

Simple line graph 00000000 00000000

..... o o

Simple ring graph . . O O

® ® ® ®
o _ O O O
Lattice @ ([
00 B

e | ot Sensing and Analysis of High-D Data .(l)ﬂ.
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Examples of cosets

Simple line graph

00000000 00000000

..... ®. ®
Simple ring graph . . O O
e o o o
. _.©O O O
Lattice ® ®
00 )-@ ® oX YoI Xo
00 ¢ ) @ O " YOX YOX
00 ¢ ) @ ® oY YoI Yo
X N B @ O . _NON JON _
quincunx
]| Sensing and Analysis of High-D Data .(I)ﬂ-
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The Agonizing Limits of Intuition

e Multiplicity of A ax
- how do we choose the control vector in that subspace 7
- even a prescription can be numerically ill-defined

- graphs with “flat” spectrum in close to their spectral radius

e Laplacian eigenvectors do not always behave like
oglobal oscillations

- seems to be true for random perturbations of simple graphs

- true even for a class of trees |Saito2011]
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The Laplacian Pyramid

Analysis operator

XL

> U1

> Ylow
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The Laplacian Pyramid

Analysis operator

L X > 1

(B
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The Laplacian Pyramid

Analysis operator

XL
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The Laplacian Pyramid

Analysis operator

XL

—> M > 10

o = Hmx y1. = = — Gyo
= MHz = - GHpo
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The Laplacian Pyramid

Analysis operator

XL
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The Laplacian Pyramid

23

Analysis operator

XL

> Yo
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The Laplacian Pyramid

24

Analysis operator

Yo _ Hm -
U I-— GHm 7

H/_/ ~ ~\~
Yy Ta
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The Laplacian Pyramid

24

Analysis operator

Yo _ Hm -
U I— GHm ’

H/_/ ~ ~\~
Yy Ta

Simple (traditional) left inverse

i=(G 1)<%>
N—— Y1
Ts N——

T, T, =1 with no conditions on H or G
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The Laplacian Pyramid

25

Pseudo Inverse ?

Tol = (Ta'Ta) T

Let’s try to use only filters

Sensing and Analysis of High-D Data
Duke University July 2011

(i

COLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



The Laplacian Pyramid

25

Pseudo Inverse ?

Tol = (Ta'Ta) T

Let’s try to use only filters

Define iteratively, through descent on LS:

arg min | Taz — y|3 > @41 =@ +7Ta’ (y — Tads)

T. = (H,' I-H,'GT)

» g @ h ?—Q Ty

® &

h

gz-ﬁ@%:% h
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The Laplacian Pyramid

we can eagsily implement T, T, with filters and masks:

® 6

N—1
TN =T Z(I —7Q)’b
7=0 N—
Use Chebyshev approximation of: Z (1 —7w)’
Sensing and Analysis of High-D Da . .(l)ﬂ.
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Kron Reduction

In order to iterate the construction, we need to construct a graph on

the reduced vertex set.
A, =Ala,a] — Ala,a)A(a, 0) A, af

Ala,al A
A= Ala,a] A
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Kron Reduction

27

In order to iterate the construction, we need to construct a graph on
the reduced vertex set.

A, =Ala,a] — Ala,a)A(a, 0) A, af

| Ala,a] A
A = { Ala,a] Ao, )

1 0 Kron reduction

—

1/3

1.0 1.0

|[Dorfler et al, 2011]
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Kron Reduction

In order to iterate the construction, we need to construct a graph on

the reduced vertex set.
A, =Ala,a] — Ala,a)A(a, 0) A, af

Properties: maps a weighted undirected laplacian to a weighted

undirected laplacian

spectral interlacing (spectrum does not degenerate)
Ae(A) < Ae(Ay) < Apgn—jal(A)

disconnected vertices linked in reduced graph IFF there is
a path that runs only through eliminated nodes

Sensing and Analysis of High-D Data .(I)ﬂ-
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Example

29

Note: For a k-regular bipartite graph

KL, —A
b= { ~AT kI, }

Kron-reduced Laplacian: L, = k%I, — AAT
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Example

29

Note: For a k-regular bipartite graph

KL, —A
b= { ~AT kI, }

Kron-reduced Laplacian: L, = k%I, — AAT
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norrsmooth s
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norrsmooth s
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nonrsmooth S

e
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i 3 » i
i i
1 |
4 4
47 3
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Filter Banks

31

2 critically sampled channels

Coset 1

Filter HHDownsamplej
[Filter GHDownsampleJ

Coset 2
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Filter Banks

2 critically sampled channels

Coset 1

Filter HHDownsamplej
[Filter GHDownsampleJ

Coset 2

[ &

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF
H(i)" + |G =2
H(1)G(N —1)+ H(N —1)G(i) =0
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Conclusions

e Structured, data dependent dictionary of wavelets

- sparsity and smoothness on graph are merged in simple

and elegant fashion
- fast algo, clean problem formulation

- graph structure can be totally hidden in wavelets

e Filter banks based on nodal domains or coloring
- Universal algo based on filtering and Kron reduction
- Efficient IFF some structure in the graph

- Unfortunately no closed form theory in general
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Wavelet Ingredients

34

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

Voal) = —1 (‘” . a)

S S
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Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

brale) = 10 (20

S

S S

T h)@ = [0 (”““ - ) fayde  (T°F)(a) = (W, f)
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Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

Vya(a) = —w (‘” - a)

<wam:1/3w(f‘“)fwa (T* 1)(a) = (o). f)

Equivalently: (T%0a)(x) = —¢ (37 - a)
(1)) = g7 [ b (s
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Graph Laplacian and Spectral Theory

G = (V,E,w) weighted, undirected graph

Non-normalized Laplacian: £L=D — A Real, symmetric

(L)) =Y _wii(FG) = F()

Why Laplacian 7
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Graph Laplacian and Spectral Theory

G = (V,E,w) weighted, undirected graph

Non-normalized Laplacian: £L=D — A Real, symmetric

(LF)(E) =D wij(f(i) — f(5))

i~
Why Laplacian ? 7Z? with usual stencil
(Lf)ijg=4fij— fivrj — fim15 — Jij+1 — fij—1

In general, graph laplacian from nicely sampled

manifold converges to Laplace-Beltrami operator
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Graph Laplacian and Spectral Theory

d2
da:?

> eiwaz

> @) = 5 [ frerds
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Graph Laplacian and Spectral Theory

d* .
@ > ot

> @) = 5 [ frerds

FEigen decomposition of Laplacian: L¢; = A\
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Graph Laplacian and Spectral Theory

dd—; > o'W > flz) = %/f(w)ewxdw

FEigen decomposition of Laplacian: L¢; = A\

For simplicity assume connected graph and 0 = A\g < A1 < Ao... < Ay

For any function on the vertex set (Vector) we have:

f (€) = (e, f Z ¢, (i) f(2) Graph Fourier Transform
N-1
=0
Sensing and Analysis of High-D Data (T
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Spectral Graph Wavelets

37

Remember good old Euclidean case:

1

T on

(T* ) () / e () f () du

We will adopt this operator view
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Spectral Graph Wavelets

Remember good old Euclidean case:

1

T on

(T* ) () / e () f () du

We will adopt this operator view
Operator-valued function via continuous Borel functional calculus

TR+ +
g: R™ — R Tg — (g (»C) Operator-valued function

Action of operator is induced by its Fourier symbol

N—1
Ty f () = g(A) f(0) (T f)(@) = Y 9(he) f(O)e(i)
¢=0
Sensing and Analysis of High-D Data .(l)ﬂ.
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Non-local Wavelet Frame

e Non-local Wavelets are ...

... Graph Wayvelets on Non-Local Graph

St e
. - - > v‘ -
- o » -
=
o - -

B
; .//// o
77

//// ,
’ > . ", -

,':'l 7 I'j"

increasing scale
" Interest: good adaptive sparsity basis
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Distributed Computation

Scenario: Network of N nodes, each knows

- local data f(n)

- local neighbors

- M Chebyshev coefficients of wavelet kernel

- A global upper bound on largest eigenvalue of graph laplacian
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Distributed Computation

Scenario: Network of N nodes, each knows

- local data f(n)

- local neighbors

- M Chebyshev coefficients of wavelet kernel

- A global upper bound on largest eigenvalue of graph laplacian

~

M
1 _
To compute: (<I>f) (—1)Ntn — (§Cj,0f T Z Cj,ka(ﬁ)f)n
k=1
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Distributed Computation

Scenario: Network of N nodes, each knows

- local data f(n)

- local neighbors

- M Chebyshev coefficients of wavelet kernel

- A global upper bound on largest eigenvalue of graph laplacian

~

M
1 _
To compute: (<I>f) (—1)Ntn — (§Cj,0f T Z Cj,ka(ﬁ)f)n
k=1

(Tl (L)f) — (%(ﬁ _ a[)f) sensor only needs f(n) from its neighbors

n n
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Distributed Computation

Scenario: Network of N nodes, each knows

- local data f(n)

- local neighbors

- M Chebyshev coefficients of wavelet kernel

- A global upper bound on largest eigenvalue of graph laplacian

~

M
1 _
To compute: (<I>f) (—1)Ntn — (§Cj,0f T Z Cj,ka(ﬁ)f)n
k=1

(Tl (L)f)n — (z(ﬁ _ a[)f)n sensor only needs f(n) from its neighbors

— 2 — — Computed by exchanging
(Tk (L)f) — _('C B OJ) (Tk_l(ﬁ)f) - Tk_z(ﬁ)f last computed values

8%
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Distributed Computation

Communication cost: 2M|E| messages of length 1 per node

Example: distributed denoising, or distributed regression, with Lasso

arg min 5 |y — @*a\]%

af) = e ([ 4@y — @7a" )] )
0 it | 2 [ < T
Sur(2) = {

z —sgn(z)u;T , 0.W.
Total communication cost:

DiStribUted L&SSO |[Mateos, Bazerque, Gianakis] C()St ~ ’E‘N

Chebyshev ®y 2M|E| messages of length 1

) Cost ~ |F|
®P"a 4M|E| messages of length J+1
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Wavelets on Graphs ?

e kixisting constructions

- wavelets on meshes (computer graphics, numerical

analysis), often via lifting

- diffusion wavelets [Maggioni, Coifman & others|

- recently several other constructions based on “organizing”

graph in a multiscale way [Gavish-Coifman|

e Goal

- process signals on graphs
- retain simplicity and signal processing flavor

- algorithm to handle fairly large graphs

Sensing and Analysis of High-D Data .(I)ﬂ-
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Scaling & Localization

42

Effect of operator dilation 7

\/<,
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42

Effect of operator dilation 7

\/<,
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42

Effect of operator dilation 7

\/<,
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Scaling & Localization

Effect of operator dilation 7

Theorem:d;(i,j) > K and g has K vanishing derivatives at 0

V5 (1)
1e 5]

Reason 7 At small scale, wavelet operator behaves like power of Laplacian

< Dt for any t smaller than a critical scale

function of dg (i, j)
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