Wavelets and Filter Banks on Graphs

Pierre Vandergheynst Signal Processing Lab, EPFL

Joint work with David Shuman

Duke Workshop on Sensing and Analysis of High-Dimensional Data

Duke University, July 2011

Processing Signals on Graphs

Social Network

Transportation Network

Processing Signals on Graphs

Social Network

Transportation Network

Short outline

- Summary of one wavelet construction on graphs
 - multiscale, filtering
- Pyramidal algorithms
 - polyphase components and downsampling
 - the Laplacian Pyramid
 - 2-channels, critically sampled filter banks?

G=(E,V) a weighted undirected graph, with Laplacian $\mathcal{L}=D-A$

G=(E,V) a weighted undirected graph, with Laplacian $\mathcal{L}=D-A$

Dilation operates through operator: $T_q^t = g(t\mathcal{L})$

G=(E,V) a weighted undirected graph, with Laplacian $\mathcal{L}=D-A$

Dilation operates through operator: $T_g^t = g(t\mathcal{L})$

Translation (localization):

Define $\psi_{t,j} = T_g^t \delta_j$ response to a delta at vertex j

$$\psi_{t,j}(i) = \sum_{\ell=0}^{N-1} g(t\lambda_{\ell})\phi_{\ell}^{*}(j)\phi_{\ell}(i) \qquad \mathcal{L}\phi_{\ell}(j) = \lambda_{\ell}\phi_{\ell}(j)$$
$$\psi_{t,a}(u) = \int_{\mathbb{R}} d\omega \,\hat{\psi}(t\omega)e^{-j\omega a}e^{j\omega u}$$

G=(E,V) a weighted undirected graph, with Laplacian $\mathcal{L}=D-A$

Dilation operates through operator: $T_g^t = g(t\mathcal{L})$

Translation (localization):

Define $\psi_{t,j} = T_g^t \delta_j$ response to a delta at vertex j

$$\psi_{t,j}(i) = \sum_{\ell=0}^{N-1} g(t\lambda_{\ell})\phi_{\ell}^{*}(j)\phi_{\ell}(i) \qquad \mathcal{L}\phi_{\ell}(j) = \lambda_{\ell}\phi_{\ell}(j)$$
$$\psi_{t,a}(u) = \int_{\mathbb{R}} d\omega \,\hat{\psi}(t\omega)e^{-j\omega a}e^{j\omega u}$$

And so formally define the graph wavelet coefficients of f:

$$W_f(t,j) = \langle \psi_{t,j}, f \rangle \qquad W_f(t,j) = T_g^t f(j) = \sum_{\ell=0}^{N-1} g(t\lambda_\ell) \hat{f}(\ell) \phi_\ell(j)$$

Frames

$$\exists A, B > O, \ \exists h : \mathbb{R}_+ \to \mathbb{R}_+ \ \text{(i.e. scaling function)}$$

wave lets

$$0 < A \leqslant h^2(u) + \sum_s g(t_s u)^2 \leqslant B < \infty$$
scaling function wavelets

scaling function

$$\phi_n = T_h \delta_n = h(\mathcal{L}) \delta_n$$

A simple way to get a tight frame:

$$\gamma(\lambda_{\ell}) = \int_{1/2}^{1} \frac{dt}{t} g^{2}(t\lambda_{\ell}) \quad \Longrightarrow \quad \tilde{g}(\lambda_{\ell}) = \sqrt{\gamma(\lambda_{\ell}) - \gamma(2\lambda_{\ell})}$$

for any admissible kernel g

Scaling & Localization

Scaling & Localization

Sparsity and Smoothness on Graphs

Remark on Implementation

Not necessary to compute spectral decomposition for filtering

 $K{-}1$

Polynomial approximation: $g(t\omega) \simeq \sum a_k(t)p_k(\omega)$

ex: Chebyshev, minimax

_acian:

multiplier

It is to implement any Fourier

Then wavelet operator expressed with_

$$T_g^t \simeq \sum_{k=0}^{K-1} a_k(t) \mathcal{L}^k$$

And use sparsity of Laplacian in an iterative way

Remark on Implementation

$$\tilde{W}_f(t,j) = (p(\mathcal{L})f^{\#})_i \qquad |W_f(t,j) - \tilde{W}_f(t,j)| \le B||f||$$

sup norm control (minimax or Chebyshef)

$$\tilde{W}_f(t_n, j) = \left(\frac{1}{2}c_{n,0}f^{\#} + \sum_{k=1}^{M_n} c_{n,k}\overline{T}_k(\mathcal{L})f^{\#}\right)_j$$

$$\overline{T}_k(\mathcal{L})f = \frac{2}{a_1}(\mathcal{L} - a_2I)\left(\overline{T}_{k-1}(\mathcal{L})f\right) - \overline{T}_{k-2}(\mathcal{L})f$$

Computational cost dominated by matrix-vector multiply with (sparse) Laplacian matrix.

In particular
$$O(\sum_{n=1}^{\infty} M_n |E|)$$

http://wiki.epfl.ch/sgwt

Note: "same" algorithm for adjoint!

Graph wavelets

- Redundancy breaks sparsity
 - can we remove some or all of it?
- Faster algorithms
 - traditional wavelets have fast filter banks implementation
 - whatever scale, you use the same filters
 - here: large scales -> more computations
- Goal: solve both problems at one

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Subsampling is equivalent to splitting in two cosets (even, odd)

Subsampling is equivalent to splitting in two cosets (even, odd)

Questions:

How do we partition a graph into meaningful cosets?

Are there efficient algorithms for these partitions?

Are there theoretical guarantees?

How do we define a new graph from the cosets?

Cosets - A spectral view

Subsampling is equivalent to splitting in two cosets (even, odd)

Classically, selecting a coset can be interpreted easily in Fourier:

$$f_{\text{sub}}(i) = \frac{1}{2}f(i)(1+\cos(\pi i))$$

eigenvector of largest eigenvalue

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally |V|!

Nodal domains of Laplacian eigenvectors are special (and well studied)

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally |V|!

Nodal domains of Laplacian eigenvectors are special (and well studied)

Theorem: the number of nodal domains associated to the largest laplacian eigenvector of a connected graph is maximal,

$$\nu(\phi_{\text{max}}) = \nu(G) = |V|$$

IFF G is bipartite

In general: $\nu(G) = |V| - \chi(G) + 2$ (extreme cases: bipartite and complete graphs)

Cosets and Nodal Domains

Nodal domain: maximally connected subgraph s.t. all vertices have same sign w.r.t a reference function

We would like to find a very large number of nodal domains, ideally |V|!

Nodal domains of Laplacian eigenvectors are special (and well studied)

For any connected graph we will thus naturally define cosets and their associated selection functions

$$V_{+} = \{i \in V \text{ s.t. } \phi_{N-1}(i) \ge 0\}$$

$$V_{-} = \{i \in V \text{ s.t. } \phi_{N-1}(i) < 0\}$$

$$M_{+}(i) = \frac{1}{2} (1 + \operatorname{sgn}(\phi_{N-1}(i)))$$

$$M_{-}(i) = \frac{1}{2} (1 - \operatorname{sgn}(\phi_{N-1}(i)))$$

Simple line graph

$$\phi_k(u) = \sin(\pi k u/n + \pi/2n) \qquad \lambda_k = 2 - 2\cos(\pi k/n) \qquad 1 \le k \le n$$

$$\lambda_k = 2 - 2\cos(\pi k/n)$$

$$1 \le k \le n$$

Simple line graph

$$\phi_k(u) = \sin(\pi k u/n + \pi/2n) \qquad \lambda_k = 2 - 2\cos(\pi k/n) \qquad 1 \le k \le n$$

$$\lambda_k = 2 - 2\cos(\pi k/n)$$

Simple line graph

Simple ring graph

$$\phi_k^1(u) = \sin(2\pi ku/n)$$
 $\phi_k^2(u) = \cos(2\pi ku/n)$ $1 \le k \le n/2$ $\lambda_k = 2 - 2\cos(2\pi k/n)$

Simple line graph

Simple ring graph

$$\phi_k^1(u) = \sin(2\pi ku/n)$$

$$\phi_k^1(u) = \sin(2\pi ku/n)$$
 $\phi_k^2(u) = \cos(2\pi ku/n)$ $1 \le k \le n/2$

$$\lambda_k = 2 - 2\cos(2\pi k/n)$$

Simple line graph

Simple ring graph

Lattice

Simple line graph Simple ring graph Lattice quincunx

The Agonizing Limits of Intuition

- Multiplicity of λ_{\max}
 - how do we choose the control vector in that subspace?
 - even a prescription can be numerically ill-defined
 - graphs with "flat" spectrum in close to their spectral radius
- Laplacian eigenvectors do not always behave like global oscillations
 - seems to be true for random perturbations of simple graphs
 - true even for a class of trees [Saito2011]

$$y_0 = \mathbf{H_m} x$$
 $y_1 = x - \mathbf{G} y_0$
= $\mathbf{M} \mathbf{H} x$ = $x - \mathbf{G} \mathbf{H_m} x$

$$\underbrace{\begin{pmatrix} y_0 \\ y_1 \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} \mathbf{H_m} \\ \mathbf{I} - \mathbf{GH_m} \end{pmatrix}}_{\mathbf{T_a}} x,$$

Analysis operator

$$\underbrace{\begin{pmatrix} y_0 \\ y_1 \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} \mathbf{H_m} \\ \mathbf{I} - \mathbf{GH_m} \end{pmatrix}}_{\mathbf{T_a}} x,$$

Simple (traditional) left inverse

$$\hat{x} = \underbrace{\left(\begin{array}{c} \mathbf{G} & \mathbf{I} \\ \mathbf{T_s} \end{array} \right)}_{\mathbf{T_s}} \underbrace{\left(\begin{array}{c} y_0 \\ y_1 \end{array} \right)}_{y}$$

$$T_sT_a=I$$

with no conditions on **H** or **G**

Pseudo Inverse?

$$\mathbf{T_a}^\dagger = \left(\mathbf{T_a}^T \mathbf{T_a}\right)^{-1} \mathbf{T_a}^T$$

Let's try to use only filters

Pseudo Inverse?

$$\mathbf{T_a}^{\dagger} = \left(\mathbf{T_a}^T \mathbf{T_a}\right)^{-1} \mathbf{T_a}^T$$

Let's try to use only filters

Define iteratively, through descent on LS:

$$\arg\min_{x} \|\mathbf{T}_{\mathbf{a}}x - y\|_{2}^{2} \longrightarrow \hat{x}_{k+1} = \hat{x}_{k} + \tau \mathbf{T}_{\mathbf{a}}^{T}(y - \mathbf{T}_{\mathbf{a}}\hat{x}_{k})$$

$$\mathbf{T_a}^T = (\mathbf{H_m}^T \quad \mathbf{I} - \mathbf{H_m}^T \mathbf{G}^T)$$

we can easily implement $\mathbf{T_a}^T \mathbf{T_a}$ with filters and masks:

With the real symmetric matrix $\mathbf{Q} = \mathbf{T_a}^T \mathbf{T_a}$ and $b = \mathbf{T_a}^T y$

$$x_N = \tau \sum_{j=0}^{N-1} (\mathbf{I} - \tau \mathbf{Q})^j b$$

$$\underline{N-1}$$

Use Chebyshev approximation of:
$$L(\omega) = \tau \sum_{i=0}^{N-1} (1 - \tau \omega)^{j}$$

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$\mathbf{A}_{r} = \mathbf{A}[\alpha, \alpha] - \mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha)$$
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha) \\ \mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha) \end{bmatrix}$$

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$\mathbf{A}_{r} = \mathbf{A}[\alpha, \alpha] - \mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha)$$
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha) \\ \mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha) \end{bmatrix}$$

[Dorfler et al, 2011]

Kron Reduction

In order to iterate the construction, we need to construct a graph on the reduced vertex set.

$$\mathbf{A}_{r} = \mathbf{A}[\alpha, \alpha] - \mathbf{A}[\alpha, \alpha) \mathbf{A}(\alpha, \alpha)^{-1} \mathbf{A}(\alpha, \alpha)$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}[\alpha, \alpha] & \mathbf{A}[\alpha, \alpha) \\ \mathbf{A}(\alpha, \alpha] & \mathbf{A}(\alpha, \alpha) \end{bmatrix}$$

Properties:

maps a weighted undirected laplacian to a weighted undirected laplacian

spectral interlacing (spectrum does not degenerate)

$$\lambda_k(\mathbf{A}) \le \lambda_k(\mathbf{A}_r) \le \lambda_{k+n-|\alpha|}(\mathbf{A})$$

disconnected vertices linked in reduced graph IFF there is a path that runs only through eliminated nodes

Example

Note: For a k-regular bipartite graph

$$\mathbf{L} = \left[egin{array}{ccc} k \mathbf{I}_n & -\mathbf{A} \ -\mathbf{A}^T & k \mathbf{I}_n \end{array}
ight]$$

Kron-reduced Laplacian: $\mathbf{L}_r = k^2 \mathbf{I}_n - \mathbf{A} \mathbf{A}^T$

Example

Note: For a k-regular bipartite graph

$$\mathbf{L} = \left[egin{array}{ccc} k \mathbf{I}_n & -\mathbf{A} \ -\mathbf{A}^T & k \mathbf{I}_n \end{array}
ight]$$

Kron-reduced Laplacian: $\mathbf{L}_r = k^2 \mathbf{I}_n - \mathbf{A} \mathbf{A}^T$

$$\hat{f}_r(i) = \hat{f}(i) + \hat{f}(N-i)$$
 $i = 1, ..., N/2$

Filter Banks

2 critically sampled channels

Filter Banks

2 critically sampled channels

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF $|H(i)|^2 + |G(i)|^2 = 2$

$$H(i)G(N-i) + H(N-i)G(i) = 0$$

Conclusions

- Structured, data dependent dictionary of wavelets
 - sparsity and smoothness on graph are merged in simple and elegant fashion
 - fast algo, clean problem formulation
 - graph structure can be totally hidden in wavelets
- Filter banks based on nodal domains or coloring
 - Universal algo based on filtering and Kron reduction
 - Efficient IFF *some* structure in the graph
 - Unfortunately no closed form theory in general

Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

$$\psi_{s,a}(x) = \frac{1}{s}\psi\left(\frac{x-a}{s}\right)$$

Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

$$\psi_{s,a}(x) = \frac{1}{s}\psi\left(\frac{x-a}{s}\right)$$

$$(T^{s}f)(a) = \int \frac{1}{s} \psi^{*} \left(\frac{x-a}{s}\right) f(x) dx \qquad (T^{s}f)(a) = \langle \psi_{(s,a)}, f \rangle$$

Wavelet Ingredients

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

$$\psi_{s,a}(x) = \frac{1}{s}\psi\left(\frac{x-a}{s}\right)$$

$$(T^{s}f)(a) = \int \frac{1}{s} \psi^{*} \left(\frac{x-a}{s}\right) f(x) dx \qquad (T^{s}f)(a) = \langle \psi_{(s,a)}, f \rangle$$

Equivalently:

$$(T^s \delta_a)(x) = \frac{1}{s} \psi^* \left(\frac{x-a}{s}\right)$$

$$(T^{s}f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^{*}(s\omega) \hat{f}(\omega) d\omega$$

G = (V, E, w) weighted, undirected graph

Non-normalized Laplacian: $\mathcal{L} = D - A$ Real, symmetric

$$(\mathcal{L}f)(i) = \sum_{i \sim j} w_{i,j}(f(i) - f(j))$$

Why Laplacian?

G = (V, E, w) weighted, undirected graph

Non-normalized Laplacian: $\mathcal{L} = D - A$ Real, symmetric

$$(\mathcal{L}f)(i) = \sum_{i \sim j} w_{i,j}(f(i) - f(j))$$

Why Laplacian? \mathbb{Z}^2 with usual stencil

$$(\mathcal{L}f)_{i,j} = 4f_{i,j} - f_{i+1,j} - f_{i-1,j} - f_{i,j+1} - f_{i,j-1}$$

In general, graph laplacian from nicely sampled manifold converges to Laplace-Beltrami operator

$$\frac{d^2}{dx^2} \quad \Longrightarrow \quad e^{i\omega x} \quad \Longrightarrow \quad f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{i\omega x} d\omega$$

$$\frac{d^2}{dx^2} \quad \Longrightarrow \quad e^{i\omega x} \quad \Longrightarrow \quad f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{i\omega x} d\omega$$

Eigen decomposition of Laplacian: $\mathcal{L}\phi_l = \lambda_l \phi_l$

$$\frac{d^2}{dx^2} \quad \Longrightarrow \quad e^{i\omega x} \quad \Longrightarrow \quad f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{i\omega x} d\omega$$

Eigen decomposition of Laplacian: $\mathcal{L}\phi_l = \lambda_l \phi_l$

For simplicity assume connected graph and $0 = \lambda_0 < \lambda_1 \le \lambda_2 ... \le \lambda_{N-1}$

For any function on the vertex set (vector) we have:

$$\hat{f}(\ell) = \langle \phi_{\ell}, f \rangle = \sum_{i=1}^{N} \phi_{\ell}^{*}(i) f(i)$$
 Graph Fourier Transform

$$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell)\phi_{\ell}(i)$$

Spectral Graph Wavelets

Remember good old Euclidean case:

$$(T^{s}f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^{*}(s\omega) \hat{f}(\omega) d\omega$$

We will adopt this operator view

Spectral Graph Wavelets

Remember good old Euclidean case:

$$(T^{s}f)(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{\psi}^{*}(s\omega) \hat{f}(\omega) d\omega$$

We will adopt this operator view

Operator-valued function via continuous Borel functional calculus

$$g: \mathbb{R}^+ \to \mathbb{R}^+$$
 $T_g = g(\mathcal{L})$ Operator-valued function

Action of operator is induced by its Fourier symbol

$$\widehat{T_g f}(\ell) = g(\lambda_{\ell})\widehat{f}(\ell) \qquad (T_g f)(i) = \sum_{\ell=0}^{N-1} g(\lambda_{\ell})\widehat{f}(\ell)\phi_{\ell}(i)$$

Non-local Wavelet Frame

• Non-local Wavelets are ...

... Graph Wavelets on Non-Local Graph

Interest: good adaptive sparsity basis

Scenario: Network of N nodes, each knows

- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

Scenario: Network of N nodes, each knows

- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute:
$$(\tilde{\Phi}f)_{(j-1)N+n} = (\frac{1}{2}c_{j,0}f + \sum_{k=1}^{M} c_{j,k}\overline{T}_k(\mathcal{L})f)_n$$

Scenario: Network of N nodes, each knows

- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute:
$$(\tilde{\Phi}f)_{(j-1)N+n} = (\frac{1}{2}c_{j,0}f + \sum_{k=1}^{M} c_{j,k}\overline{T}_k(\mathcal{L})f)_n$$

$$\left(\overline{T}_1(\mathcal{L})f\right)_n = \left(\frac{2}{\alpha}(\mathcal{L} - \alpha I)f\right)_n$$
 sensor only needs $\mathbf{f}(\mathbf{n})$ from its neighbors

Scenario: Network of N nodes, each knows

- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

To compute:
$$(\tilde{\Phi}f)_{(j-1)N+n} = (\frac{1}{2}c_{j,0}f + \sum_{k=1}^{M} c_{j,k}\overline{T}_k(\mathcal{L})f)_n$$

$$\left(\overline{T}_1(\mathcal{L})f\right)_n = \left(\frac{2}{\alpha}(\mathcal{L} - \alpha I)f\right)_n$$
 sensor only needs $\mathbf{f}(\mathbf{n})$ from its neighbors

$$\left(\overline{T}_k(\mathcal{L})f\right) = \frac{2}{\alpha}(\mathcal{L} - \alpha I)\left(\overline{T}_{k-1}(\mathcal{L})f\right) - \overline{T}_{k-2}(\mathcal{L})f$$

Computed by exchanging last computed values

Communication cost: 2M|E| messages of length 1 per node

Example: distributed denoising, or distributed regression, with Lasso

$$\arg\min_{a} \frac{1}{2} ||y - \mathbf{\Phi}^* a||_2^2 + ||a||_{1,\mu}$$

$$a_i^{(k)} = \mathcal{S}_{\mu_i,\tau} \left(\left[a^{k-1} + \tau \mathbf{\Phi} (y - \mathbf{\Phi}^* a^{k-1}) \right]_i \right)$$

$$\mathcal{S}_{\mu_i\tau}(z) := \begin{cases} 0, & \text{if } |z| \leq \mu_i \tau \\ z - \operatorname{sgn}(z) \mu_i \tau, & \text{o.w.} \end{cases}$$

Total communication cost:

Distributed Lasso [Mateos, Bazerque, Gianakis] $\operatorname{Cost} \sim |E|N$

Chebyshev Φy 2M|E| messages of length 1

Cost $\sim |E|$

 $\mathbf{\Phi}\mathbf{\Phi}^*a$ 4M|E| messages of length J+1

Wavelets on Graphs?

- Existing constructions
 - wavelets on meshes (computer graphics, numerical analysis), often via lifting
 - diffusion wavelets [Maggioni, Coifman & others]
 - recently several other constructions based on "organizing" graph in a multiscale way [Gavish-Coifman]
- Goal
 - process signals on graphs
 - retain simplicity and signal processing flavor
 - algorithm to handle fairly large graphs

Effect of operator dilation?

Effect of operator dilation?

Effect of operator dilation?

Effect of operator dilation?

Theorem: $d_G(i,j) > K$ and g has K vanishing derivatives at θ

$$\frac{\psi_{t,j}(i)}{\|\psi_{t,j}\|} \leq Dt \quad \text{for any t smaller than a critical scale}$$
function of $d_G(i,j)$

Reason? At small scale, wavelet operator behaves like power of Laplacian

