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Short outline

 Summary of one wavelet construction on graphs
- multiscale, filtering

 Pyramidal algorithms
- polyphase components and downsampling
- the Laplacian Pyramid
- 2-channels, critically sampled filter banks ?
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Spectral Graph Wavelets
4

T t
g = g(tL)Dilation operates through operator: 

Lφ�(j) = λ�φ�(j)

ψt,j = T t
gδj

ψt,j(i) =
N−1�

�=0

g(tλ�)φ∗� (j)φ�(i)

ψt,a(u) =
�

R
dω ψ̂(tω)e−jωaejωu

Translation (localization):

Define response to a delta at vertex j

L = D −AG=(E,V) a weighted undirected graph, with Laplacian
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Spectral Graph Wavelets
4

T t
g = g(tL)Dilation operates through operator: 

Lφ�(j) = λ�φ�(j)

ψt,j = T t
gδj

ψt,j(i) =
N−1�

�=0

g(tλ�)φ∗� (j)φ�(i)

ψt,a(u) =
�

R
dω ψ̂(tω)e−jωaejωu

Translation (localization):

Define response to a delta at vertex j

Wf (t, j) = �ψt,j , f� Wf (t, j) = T t
gf(j) =

N−1�

�=0

g(tλ�)f̂(�)φ�(j)

And so formally define the graph wavelet coefficients of f:

L = D −AG=(E,V) a weighted undirected graph, with Laplacian



γ(λ�) =
� 1

1/2

dt

t
g2(tλ�) g̃(λ�) =

�
γ(λ�)− γ(2λ�)

φn = Thδn = h(L)δn
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Frames
5

∃A, B > O, ∃h : R+ → R+ (i.e. scaling function)
0 < A � h2(u) +

�
s g(tsu)2 � B < ∞

scaling function wavelets
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A simple way to get a tight frame:

for any admissible kernel g
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Scaling & Localization
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Scaling & Localization
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Sparsity and Smoothness on Graphs
8

scaling functions coeffs



T t
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K−1�

k=0

ak(t)Lk
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Remark on Implementation
9

Not necessary to compute spectral decomposition for filtering

Polynomial approximation :

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

And use sparsity of Laplacian in an iterative way

g(tω) �
K−1�

k=0

ak(t)pk(ω)

It is to implement any Fourier 
multiplier



W̃f (t, j) =
�
p(L)f#

�
j

|Wf (t, j)− W̃f (t, j)| ≤ B�f�

W̃f (tn, j) =

�
1
2
cn,0f

# +
Mn�

k=1

cn,kT k(L)f#

�

j

T k(L)f =
2
a1

(L− a2I)
�
T k−1(L)f

�
− T k−2(L)f
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Remark on Implementation
10

sup norm control (minimax or Chebyshef)

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with 
(sparse) Laplacian matrix. 
In particular

Note: “same” algorithm for adjoint !

http://wiki.epfl.ch/sgwt

http://wiki.epfl.ch/sgwt
http://wiki.epfl.ch/sgwt
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Graph wavelets
 Redundancy breaks sparsity
- can we remove some or all of it ?

 Faster algorithms
- traditional wavelets have fast filter banks implementation
- whatever scale, you use the same filters
- here: large scales -> more computations

 Goal: solve both problems at one

11
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Basic Ingredients
12

Euclidean multiresolution is based on two main operations

Filtering (typically low-pass and high-pass)
Down and Up sampling

Filtering is fine but how do we downsample on graphs ???
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Basic Ingredients
13

Subsampling is equivallent to splitting in two cosets (even, odd)

Questions: How do we partition a graph into meaningful cosets ?

Are there efficient algorithms for these partitions ?

Are there theoretical guarantees ?

How do we define a new graph from the cosets ?



fsub(i) =
1
2
f(i)

�
1 + cos(πi)

�

Sensing and Analysis of High-D Data
Duke University July 2011

Cosets - A spectral view
14

Subsampling is equivallent to splitting in two cosets (even, odd)

Classically, selecting a coset can be interpreted easily in Fourier:

eigenvector of 
largest eigenvalue
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Nodal domain: maximally connected subgraph s.t. all vertices have
                        same sign w.r.t a reference function 

We would like to find a very large number of nodal domains, ideally |V| !

Nodal domains of Laplacian eigenvectors are special (and well studied)
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Cosets and Nodal Domains
15

Nodal domain: maximally connected subgraph s.t. all vertices have
                        same sign w.r.t a reference function 

We would like to find a very large number of nodal domains, ideally |V| !

Nodal domains of Laplacian eigenvectors are special (and well studied)

ν(G) = |V |− χ(G) + 2

ν(φmax) = ν(G) = |V |

Theorem: the number of nodal domains associated to the largest 
laplacian eigenvector of a connected graph is maximal,
  
IFF G is bipartite

In general: (extreme cases: bipartite and complete graphs)



M+(i) =
1
2
�
1 + sgn(φN−1(i))

�
V+ = {i ∈ V s.t. φN−1(i) ≥ 0}

M−(i) =
1
2
�
1− sgn(φN−1(i))

�
V− = {i ∈ V s.t. φN−1(i) < 0}
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Cosets and Nodal Domains
16

We would like to find a very large number of nodal domains, ideally |V| !

Nodal domains of Laplacian eigenvectors are special (and well studied)

Nodal domain: maximally connected subgraph s.t. all vertices have
                        same sign w.r.t a reference function 

For any connected graph we will thus naturally define cosets 
and their associated selection functions



λk = 2− 2 cos(πk/n)φk(u) = sin(πku/n + π/2n) 1 ≤ k ≤ n
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Examples of cosets
17

Simple line graph
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Simple line graph



φ1
k(u) = sin(2πku/n) φ2

k(u) = cos(2πku/n) 1 ≤ k ≤ n/2

λk = 2− 2 cos(2πk/n)

Sensing and Analysis of High-D Data
Duke University July 2011

Examples of cosets
18

Simple line graph

Simple ring graph



φ1
k(u) = sin(2πku/n) φ2

k(u) = cos(2πku/n) 1 ≤ k ≤ n/2

λk = 2− 2 cos(2πk/n)

Sensing and Analysis of High-D Data
Duke University July 2011

Examples of cosets
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Simple line graph

Simple ring graph
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Examples of cosets
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Simple line graph

Simple ring graph

Lattice
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Examples of cosets
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Simple line graph

Simple ring graph

Lattice

quincunx
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The Agonizing Limits of Intuition
 Multiplicity of 
- how do we choose the control vector in that subspace ?
- even a prescription can be numerically ill-defined
- graphs with “flat” spectrum in close to their spectral radius

 Laplacian eigenvectors do not always behave like 
global oscillations
- seems to be true for random perturbations of simple graphs
- true even for a class of trees [Saito2011]

20

λmax
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The Laplacian Pyramid
21

Analysis operator

y1

ylowH D

U

G

-x
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Analysis operator

y0

y1
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G
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y0 = Hmx

= MHx

y1 = x−Gy0

= x−GHmx
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The Laplacian Pyramid
23

Analysis operator

y0

y1

H M

G

-x

upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking difference of the original signal and the
output of the second filter.

Consider an input graph-signal x ∈ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃V
Tx, (5.1)

where V = [v0|v1|...|vn−1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(λl)}n−1

l=0 and
off-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ → R+.

The output of the highpass channel is then given by y1 = x−Gy0 which
is equal to the reconstruction error.

y1 = x−Gx

= x−VG̃V
Tx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(λl)}n−1

l=0 and off-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ → R+.

The analysis operator Ta is then defined in

�
y0

y1

�

� �� �
y

=

�
Hm

I−GHm

�

� �� �
Ta

x, (5.3)

where y0, y1 ∈ Rn are the coarse and prediction error coefficients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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The Laplacian Pyramid
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Analysis operator

upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking difference of the original signal and the
output of the second filter.

Consider an input graph-signal x ∈ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃V
Tx, (5.1)

where V = [v0|v1|...|vn−1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(λl)}n−1

l=0 and
off-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ → R+.

The output of the highpass channel is then given by y1 = x−Gy0 which
is equal to the reconstruction error.

y1 = x−Gx

= x−VG̃V
Tx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(λl)}n−1

l=0 and off-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ → R+.

The analysis operator Ta is then defined in

�
y0

y1

�

� �� �
y

=

�
Hm

I−GHm

�

� �� �
Ta

x, (5.3)

where y0, y1 ∈ Rn are the coarse and prediction error coefficients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.

30



Sensing and Analysis of High-D Data
Duke University July 2011

The Laplacian Pyramid
24

Analysis operator

upsampling by masking operator M where M is a diagonal matrix with ones
at on-diagonal entries correspond to the location of the selected vertices, and
zeros elsewhere.

Then we will pass the output of the masking block through a second filter
g in order to reconstruct the original function. Finally, the reconstruction
error is easily computed by taking difference of the original signal and the
output of the second filter.

Consider an input graph-signal x ∈ Rn. In our notation, y0 = Hmx
denotes the output of h-filtering followed by masking operator. This is the
output of the lowpass channel in the LP framework.

y0 = Hmx

= MHx

= MVH̃V
Tx, (5.1)

where V = [v0|v1|...|vn−1] is the matrix of the eigenvectors of graph Lapla-
cian L and H̃ is a diagonal matrix with on-diagonal entries {h(λl)}n−1

l=0 and
off-diagonal entries equal to zero. Recall that the multiplier is the real-valued
function h : R+ → R+.

The output of the highpass channel is then given by y1 = x−Gy0 which
is equal to the reconstruction error.

y1 = x−Gx

= x−VG̃V
Tx, (5.2)

where V is defined earlier and G̃ is a diagonal matrix with on-diagonal entries
{g(λl)}n−1

l=0 and off-diagonal entries equal to zero. Note that for the second
filter we use the multiplier g : R+ → R+.

The analysis operator Ta is then defined in

�
y0

y1

�

� �� �
y

=

�
Hm

I−GHm

�

� �� �
Ta

x, (5.3)

where y0, y1 ∈ Rn are the coarse and prediction error coefficients respectively.
Fig. 5.1 shows the analysis part of the graph Laplacian Pyramid.
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TsTa = I

Simple (traditional) left inverse

Figure 5.1: Analysis scheme in graph Laplacian pyramid.

The usual inverse transform of the LP for reconstruction of the original
signal is also given in

x̂ = ( G I )� �� �
Ts

�
y0

y1

�

� �� �
y

. (5.4)

First, we predict the original signal by filtering of the coarse version y0 and
add the reconstruction error y1 to recover the original signal x completely.
Fig. 5.2 shows the usual inverse transform of the graph LP.

Figure 5.2: Usual synthesis scheme in graph Laplacian pyramid.

It is easy to check that TsTa = I for any Hm,G. In fact, it shows that LP
can be perfectly reconstructed with any pairs of filters Hm,G. Analogously
to the classical Laplacian pyramid, since the graph LP is also a redundant
transform, an infinite number of left inverses are admitted as synthesis oper-
ator. The most important one among those is the pseudo inverse

Ta
† = (Ta

T
Ta)

−1
Ta

T . (5.5)

As it is discussed previously in classical Laplacian pyramid, the impor-
tance of the pseudo inverse as a synthesis operator is its ability to eliminate
the influence of those errors which are added to the transform coefficients y
and are orthogonal to the range of the analysis operator Ta. So, if instead of
having access to y = Tsx we have ŷ = y+e, then the pseudo inverse provides
the solution x̂ = Ta

†ŷ that minimizes the residual ||Tax̂− ŷ||2.

31

with no conditions on H or G
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† =

�
Ta

T Ta

�−1Ta
T
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The Laplacian Pyramid
25

Pseudo Inverse ?

Let’s try to use only filters
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The Laplacian Pyramid
25

Pseudo Inverse ?

Let’s try to use only filters

arg min
x
�Tax− y�2

2 x̂k+1 = x̂k + τTa
T (y −Tax̂k)

Ta
T = (Hm

T
I−Hm

T
G

T )

Define iteratively, through descent on LS:

Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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Ta
T Ta

Q = Ta
T Ta b = Ta

T y

xN = τ
N−1�

j=0

(I− τQ)jb

L(ω) = τ
N−1�

j=0

(1− τω)j
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The Laplacian Pyramid
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Figure 5.3: Complementary operator Ta
T for synthesis part of the graph LP.

Figure 5.4: Complementary operator Ta
TT for synthesis part of the graph

LP.

Figure 5.5: Iterative reconstruction of the graph-signal using gradient descent
method.
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we can easily implement with filters and masks:

With the real symmetric matrix and

Use Chebyshev approximation of:



Ar = A[α,α]−A[α,α)A(α,α)−1A(α,α]

A =
�

A[α,α] A[α,α)
A(α,α] A(α,α)

�
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Kron Reduction
27

In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 
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Kron Reduction
27

In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 

2 F. Dörfler and F. Bullo

is the loopy Laplacian matrix. In various applications of circuit theory and related
disciplines it is desirable to obtain a lower dimensional electrically-equivalent network
from the viewpoint of certain boundary nodes (or terminals) α � {1, . . . , n}, |α| ≥ 2.
If β = {1, . . . , n}\α denotes the set of interior nodes, then, after appropriately labeling
the nodes, the current-balance equations can be partitioned as

�
Iα
Iβ

�
=

�
Qαα Qαβ

Qβα Qββ

� �
Vα

Vβ

�
. (1.1)

Gaussian elimination of the interior voltages Vβ in equations (1.1) gives an electrically-
equivalent reduced network with |α| nodes obeying the reduced current-balances

Iα +QacIβ = QredVα , (1.2)

where the reduced conductance matrixQred ∈ R|α|×|α| is again a loopy Laplacian given
by the Schur complement of Q with respect to the interior nodes β, that is, Qred =
Qαα−QαβQ

−1
ββQβα. The accompanying matrix Qac = −QαβQ

−1
ββ ∈ R|α|×(n−|α|) maps

internal currents to boundary currents in the reduced network. In case that Iβ is the
vector of zeros, the (i, j)-element of Qred is the current at boundary node i due to a
unit potential at boundary node j and a zero potential at all other boundary nodes.
From here the reduced network can be further analyzed as an |α|-port with current
injections Iα +QacIβ and transfer conductance matrix Qred.

This reduction of an electrical network via a Schur complement of the associated
conductance matrix is known as Kron reduction due to the seminal work of Gabriel
Kron [37], who identified fundamental interconnections among physics, linear algebra,
and graph theory [33, 38]. The Kron reduction of a simple tree-like network with-
out current injections or shunt conductances is illustrated in Figure 1.1, an example
familiar to every engineering student as the Y −∆ transformation.

8

8

8
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1.0 1.0

1.0
Kron reduction

8

8

8

1/3

1/31/3

Fig. 1.1. Kron reduction of a star-like electrical circuit with three boundary nodes ��, one
interior node •◦ , and with unit conductances resulting in a reduced triangular reduced circuit.

Literature Review. The Kron reduction of networks is ubiquitous in circuit
theory and related applications in order to obtain lower dimensional electrically-
equivalent circuits. It appears for instance in the behavior, synthesis, and analysis of
resistive circuits [56, 60, 59], particularly in the context of large-scale integration chips
[48, 53, 1]. When applied to the impedance matrix of a circuit rather than the admit-
tance matrix, Kron reduction is also referred to as the “shortage operator” [2, 3, 35].
Kron reduction is a standard tool in the power systems community to obtain station-
ary and dynamically-equivalent reduced models for power flow studies [58, 10, 61], or
in the reduction of differential-algebraic power network and RLC circuit models to
lower dimensional purely dynamic models [45, 52, 5, 18, 20]. A recent application of
Kron reduction is monitoring in smart power grids [17] via synchronized phasor mea-
surement units. Kron reduction is also crucial for reduced order modeling, analysis,

[Dorfler et al, 2011]



Ar = A[α,α]−A[α,α)A(α,α)−1A(α,α]

A =
�

A[α,α] A[α,α)
A(α,α] A(α,α)

�

λk(A) ≤ λk(Ar) ≤ λk+n−|α|(A)
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Kron Reduction
28

Properties:

In order to iterate the construction, we need to construct a graph on 
the reduced vertex set. 

maps a weighted undirected laplacian to a weighted 
undirected laplacian
spectral interlacing (spectrum does not degenerate)

disconnected vertices linked in reduced graph IFF there is 
a path that runs only through eliminated nodes 



L =
�

kIn −A
−AT kIn

�

Lr = k2In −AAT
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Example
29

Note: For a k-regular bipartite graph

Kron-reduced Laplacian:
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kIn −A
−AT kIn

�

Lr = k2In −AAT
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Example
29

Note: For a k-regular bipartite graph

Kron-reduced Laplacian:

f̂r(i) = f̂(i) + f̂(N − i) i = 1, ..., N/2
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Filter Banks
31

2 critically sampled channels

Filter H

Filter G

Downsample

Downsample

Coset 1

Coset 2
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Filter Banks
31

2 critically sampled channels

Filter H

Filter G

Downsample

Downsample

Coset 1

Coset 2

|H(i)|2 + |G(i)|2 = 2

H(i)G(N − i) + H(N − i)G(i) = 0

Theorem: For a k-RBG, the filter bank is perfect-reconstruction IFF 
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Conclusions
 Structured, data dependent dictionary of wavelets
- sparsity and smoothness on graph are merged in simple 

and elegant fashion
- fast algo, clean problem formulation
- graph structure can be totally hidden in wavelets

 Filter banks based on nodal domains or coloring
- Universal algo based on filtering and Kron reduction
- Efficient IFF some structure in the graph
- Unfortunately no closed form theory in general
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Wavelet Ingredients
34

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)
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Wavelet Ingredients
34

Wavelet transform based on two operations:

Dilation (or scaling) and Translation (or localization)

(T sδa)(x) =
1
s
ψ∗

�x− a

s

�

(T sf)(x) =
1
2π

�
eiωxψ̂∗(sω)f̂(ω)dω

Equivalently:



L = D −A

(Lf)(i) =
�

i∼j

wi,j(f(i)− f(j))

G = (V,E, w)
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Graph Laplacian and Spectral Theory
35

Non-normalized Laplacian: Real, symmetric

Why Laplacian ?

weighted, undirected graph
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Graph Laplacian and Spectral Theory
35

Non-normalized Laplacian: Real, symmetric

Why Laplacian ? Z2

(Lf)i,j = 4fi,j − fi+1,j − fi−1,j − fi,j+1 − fi,j−1

with usual stencil

In general, graph laplacian from nicely sampled  
manifold converges to Laplace-Beltrami operator

weighted, undirected graph
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Graph Laplacian and Spectral Theory
36
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Graph Laplacian and Spectral Theory
36

Lφl = λlφlEigen decomposition of Laplacian:
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Graph Laplacian and Spectral Theory
36

Lφl = λlφlEigen decomposition of Laplacian:

0 = λ0 < λ1 ≤ λ2... ≤ λN−1

f̂(�) = �φ�, f� =
N�

i=1

φ∗
� (i)f(i)

f(i) =
N−1�

�=0

f̂(�)φ�(i)

Graph Fourier Transform

For simplicity assume connected graph and

For any function on the vertex set (vector) we have:
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Spectral Graph Wavelets
37

Remember good old Euclidean case:

(T sf)(x) =
1
2π

�
eiωxψ̂∗(sω)f̂(ω)dω

We will adopt this operator view
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Spectral Graph Wavelets
37

Remember good old Euclidean case:

(T sf)(x) =
1
2π

�
eiωxψ̂∗(sω)f̂(ω)dω

We will adopt this operator view

g : R+ → R+ Tg = g(L)

�Tgf(�) = g(λ�)f̂(�) (Tgf)(i) =
N−1�

�=0

g(λ�)f̂(�)φ�(i)

Operator-valued function via continuous Borel functional calculus

Operator-valued function

Action of operator is induced by its Fourier symbol
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Non-local Wavelet Frame
 Non-local Wavelets are ...

                   ... Graph Wavelets on Non-Local Graph

38

increasing scale

ψt, (i)

Interest: good adaptive sparsity basis
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Distributed Computation
39

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian
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Distributed Computation
39

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

�
Φ̃f

�
(j−1)N+n

=
�1
2
cj,0f +

M�

k=1

cj,kT k(L)f
�
n

To compute:
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Distributed Computation
39

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

�
T 1(L)f

�

n
=

� 2
α

(L− αI)f
�

n
sensor only needs f(n) from its neighbors

�
Φ̃f

�
(j−1)N+n

=
�1
2
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M�

k=1

cj,kT k(L)f
�
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Distributed Computation
39

Scenario: Network of N nodes, each knows
- local data f(n)
- local neighbors
- M Chebyshev coefficients of wavelet kernel
- A global upper bound on largest eigenvalue of graph laplacian

�
T 1(L)f

�

n
=

� 2
α

(L− αI)f
�

n
sensor only needs f(n) from its neighbors

�
T k(L)f

�
=

2
α

(L− αI)
�
T k−1(L)f

�
− T k−2(L)f

Computed by exchanging 
last computed values 

�
Φ̃f

�
(j−1)N+n

=
�1
2
cj,0f +

M�

k=1

cj,kT k(L)f
�
n

To compute:



arg min
a

1
2
�y −Φ∗a�2

2 + �a�1,µ

a(k)
i = Sµi,τ

��
ak−1 + τΦ(y −Φ∗ak−1)

�
i

�

Φy

ΦΦ∗a
Cost ∼ |E|
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Distributed Computation
40

Communication cost: 2M|E| messages of length 1 per node

Example: distributed denoising, or distributed regression, with Lasso

0 5 10 15
0
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0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Exact Multiplier

Chebyshev Polynomial Approximation, M=5

Chebyshev Polynomial Approximation, M=15

Fig. 4. The regularizing multiplier τ
τ+2λr

!
associated with the graph

Fourier multiplier operator R from Proposition 1. Here, r = τ = 1.
Shifted Chebyshev polynomial approximations to the multiplier are shown
for different values of the approximation order M .

Original Signal

(a)

Noise

(b)

Noisy Signal

(c)

Denoised Signal

(d)

Fig. 5. A denoising example on the graph shown in Figure 2, using the
regularizing multiplier shown in Figure 4. (a) The original signal n2

x+n2
y−1,

where nx and ny are the x and y coordinates of sensor node n. (b) The
additive Gaussian noise. (c) The noisy signal y. (d) The denoised signal R̃y.

C . D istributed Wavelet Denoising

In this section, we consider an alternate method of dis-
tributed denoising that may be better suited to signals that are
piecewise smooth on the graph, but not necessarily globally
smooth. The setup is the same as in Section V-B, with a noisy
signal y ∈ RN , and each sensor n observing yn. Instead of
starting with a prior that the signal is globally smooth, we start
with a prior belief that the signal is sparse in the spectral graph
wavelet domain [17]. The spectral graph wavelet transform,
W , defined in [17], is precisely of the form of Φ in (6).
Namely, it is composed of one multiplier, h(·), that acts as
a low-pass filter to stably represent the signal’s low frequency
content, and J wavelet operators, defined by gj(λ!) = g(tjλ!),
where {tj}j=1,2,...,J is a set of scales and g(·) is the wavelet
multiplier that acts as a band-pass filter.

The most common way to incorporate a sparse prior in a

centralized setting is to regularize via a weighted version of the
least absolute shrinkage and selection operator (lasso) [22],
also called basis pursuit denoising [23]:

argmin
a

1

2
‖y − W ∗a‖2

2 + ‖a‖1,µ , (20)

where ‖a‖1,µ :=
∑N(J+1)

i=1 µi |ai|. The optimization problem
in (20) can be solved for example by iterative soft thresholding
[24]. The initial estimate of the wavelet coefficients a(0)

is arbitrary, and at each iteration of the soft thresholding
algorithm, the update of the estimated wavelet coefficients is
given by

a(k)
i = Sµiτ

((
a(k−1) + τW

[
y − W ∗a(k−1)

])

i

)
,

k = 1, 2, . . . (21)

where τ is the step size and Sµiτ is the shrinkage or soft
thresholding operator

Sµiτ (z) :=

{
0 , if | z |≤ µiτ
z − sgn(z)µiτ , o.w.

.

The iterative soft thresholding algorithm converges to a∗, the
minimizer of (20), if τ < 2

‖W∗‖2 [25]. The final denoised
estimate of the signal is then given by W ∗a∗.

We now turn to the issue of how to implement the above al-
gorithm in a distributed fashion by sending messages between
neighbors in the network. One option would be to use the
distributed lasso algorithm of [26], which is a special case of
the Alternating Direction Method of Multipliers [27, p. 253].
In every iteration of that algorithm, each node transmits its
current estimate of all the wavelet coefficients to its local
neighbors. With a transform the size of the spectral graph
wavelet transform, this requires 2|E| total messages at every
iteration, with each message being a vector of length N(J+1).
A method where the amount of communicated information
does not grow with N (beyond the number of edges, |E|)
would be highly preferable.

The Chebyshev polynomial approximation of the spectral
graph wavelet transform allows us to accomplish this goal. Our
approach is to approximate W by W̃ , and use the distributed
implementation of the approximate wavelet transform and its
adjoint to perform iterative soft thresholding. In the first soft
thresholding iteration, each node n must learn (W̃y)(j−1)N+n

at all scales j, via Algorithm 1. These coefficients are then
stored for future iterations. In the kth iteration, each node n
must learn the J + 1 coefficients of W̃W̃ ∗a(k−1) centered at
n, via the method of Section IV-C. Finally, when a stopping
criterion for the soft thresholding is satisfied, the adjoint
operator W̃ ∗ is applied in a distributed manner to the resulting
coefficients ã∗, via the method of Section IV-B, and node n’s

denoised estimate of its signal is
(
W̃ ∗ã∗

)

n
.

We now examine the communication requirements of this
approach. Recall from Section IV that 2M |E| messages of
length 1 are required to compute W̃y in a distributed fashion.
At each iteration, distributed computation of W̃W̃ ∗a(k−1), the
other term needed in the iterative thresholding update (21),

Total communication cost:

2M|E| messages of length 1

4M|E| messages of length J+1

Distributed Lasso [Mateos, Bazerque, Gianakis] Cost ∼ |E|N

Chebyshev
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Wavelets on Graphs ?
 Existing constructions
- wavelets on meshes (computer graphics, numerical 

analysis), often via lifting
- diffusion wavelets [Maggioni, Coifman & others]
- recently several other constructions based on “organizing” 

graph in a multiscale way [Gavish-Coifman]
 Goal
- process signals on graphs
- retain simplicity and signal processing flavor
- algorithm to handle fairly large graphs

41
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Scaling & Localization
42

Effect of operator dilation ?
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Scaling & Localization
42

Effect of operator dilation ?

Reason ? At small scale, wavelet operator behaves like power of Laplacian

ψt,j(i)
�ψt,j�

≤ Dt

dG(i, j) > K

function of dG(i, j)

Theorem:

for any t smaller than a critical scale 

and g has K vanishing derivatives at 0


