

DIFFUSE INTERFACE MODELS ON GRAPHS FOR CLASSIFICATION OF HIGH DIMENSIONAL DATA

Andrea Bertozzi

University of California, Los Angeles

www.math.ucla.edu/~bertozzi

Thanks to J. Dobrosotskaya, S. Esedoglu, A.

Flenner, A. Gillette, C. Schoenlieb

DIFFUSE INTERFACE METHODS - PDES

$$\int |\nabla u| dx \sim \frac{\epsilon}{2} \int |\nabla u|^2 + \frac{1}{\epsilon} \int W(u) dx$$

Total variation

Ginzburg-Landau functional

W is a double well potential with two minima

Total variation measures length of boundary between two constant regions.

GL energy is a diffuse interface approximation of TV for binary functionals

DIFFUSE INTERFACE EQUATIONS AND THEIR SHARP INTERFACE LIMIT

$$u_t = \epsilon \Delta u - \frac{1}{\epsilon} W'(u)$$

Allen-Cahn equation – L² gradient flow of GL functional Approximates motion by mean curvaure - useful for image segmentation and image deblurring.

$$u_t = -\Delta(\epsilon \Delta u - \frac{1}{\epsilon} W'(u))$$

Cahn-Hilliard equation – H⁻¹ gradient flow of GL functional Approximates Mullins-Sekerka problem (nonlocal): Pego; Alikakos, Bates, and Chen. Conserves the mean of u.

Used in image inpainting – fourth order allows for two boundary conditions to be satisfied for inpainting.

EXAMPLES OF ALLEN-CAHN EQUATION IN IMAGE PROCESSING

$$E(u) = GL(u) + \lambda \int (K * u - f)^2 dx$$

Selim Esedoglu: Blind deconvolution of bar codes *Inverse Problems* 2004 – K is a blurring kernel which can be identified as part of the process. Uses a gradient flow method to minimize E. Results in a modified Allen-Cahn equation with forcing.

$$u_t = \epsilon \Delta u - \frac{1}{\epsilon} W'(u)$$
 — Threshold Dynamics

Merriman-Bence-Osher show that AC can approximated by repeated thresholding and solution of heat equation- leads to a numerical solution of Motion by Mean Curvature.

Esedoglu-Tsai (*JCP 2006*) generalize this to the solution of the piecewise constant Mumford-Shah problem.

FAST CAHN-HILLIARD INPAINTING

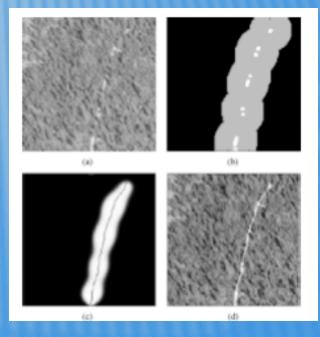
US Patent No. 7,840,086

Bertozzi, Esedoglu, Gillette, *IEEE Trans. Image Proc. 2007, SIAM MMS 2007 Transitioned to NGA for road inpainting.*

Transitioned to InQtel for document exploitation.

Continue edges in the same direction – higher order method for local inpainting. Fast method using convexity splitting and FFT





where

$$\lambda(\vec{x}) = \begin{cases} 0 & \text{if } \vec{x} \in D \\ \lambda_0 & \text{if } \vec{x} \in \Omega \setminus D. \end{cases}$$

H⁻¹ gradient flow for diffuse TV L² fidelity with known data

CONVEX SPLITTING SCHEMES - FAST METHODS

Bertozzi, Esedoglu, Gillette, *IEEE Trans. Imag. Proc.* 2007 Dobrosotskaya, Bertozzi, *IEEE Trans. Imag. Proc.* 2008 Schoenlieb and Bertozzi, *Comm. Math. Sci.* 2011

Basic idea:

$$E(u) = E_c(u) - E_e(u)$$

$$U_{k+1} - U_k = -\Delta t(\nabla E_c(U_{k+1}) - \nabla E_e(U_k))$$

Art is to choose E_c to give an implicit problem that is easy to solve

- e.g. E_c is H¹ semi norm can be solved using FFT
- in wavelet case E_c is wavelet Laplace operator

Contraints on E_c and E_e so that splitting is unconditionally stable

Proof of convergence of splitting schemes for various higher order inpainting methods- with Carola Schoenlieb, CMS 2011

THE WAVELET LAPLACIAN AND DIFFUSE INTERFACES – SHARPER INTERFACES

$$\int |\nabla u| dx \sim \frac{\epsilon}{2} \int |\nabla u|^2 + \frac{1}{\epsilon} \int W(u) dx$$

Total variation

Ginzburg-Landau functional

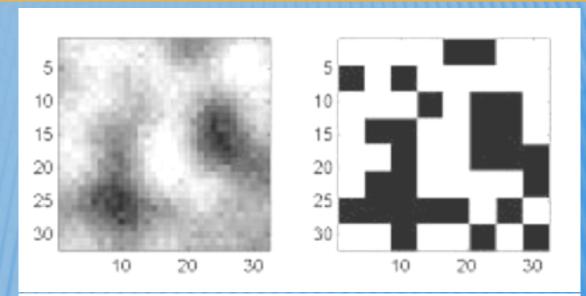
$$\Delta u = -4\pi^2 \sum_{k} k^2 < u, e^{-2\pi i k \cdot x} > e^{-2\pi i k \cdot x}$$

$$\Delta_w u := -\sum_j 2^{2j} < u, \psi_{j,k} > \psi_{j,k}$$

Dobrosotskaya and Bertozzi IEEE Trans. Imag. Proc. 2008

WAVELET ALLEN-CAHN IMAGE PROCESSING

- Dobrosotskaya, Bertozzi, *IEEE Trans. Image Proc. 2008, Interfaces and Free Boundaries 2011.*
- Transitioned to NGA for road inpainting. Transitioned to InQtel for document exploitation.
- Nonlocal wavelet basis replaces Fourier basis in classical diffuse interface method.
- Analysis theory in Besov spaces.
- Gamma convergence to anisotropic TV.



GAMMA CONVERGE OF WAVELET GINZBURG-

LANDAU ENERGY

Dobrosotskaya and Bertozzi, IFB 2011

$$GL_{\epsilon}(f) = \frac{\epsilon}{2} \int |\nabla f(x)|^2 dx + \frac{1}{4\epsilon} \int W(f(x)) dx, \quad W(f) = (f^2 - 1)^2$$

$$WGL_{\epsilon}(f) = \frac{\epsilon}{2}|f|_{B}^{2} + \frac{1}{4\epsilon}\int W(f(x))dx, f \in H^{1},$$

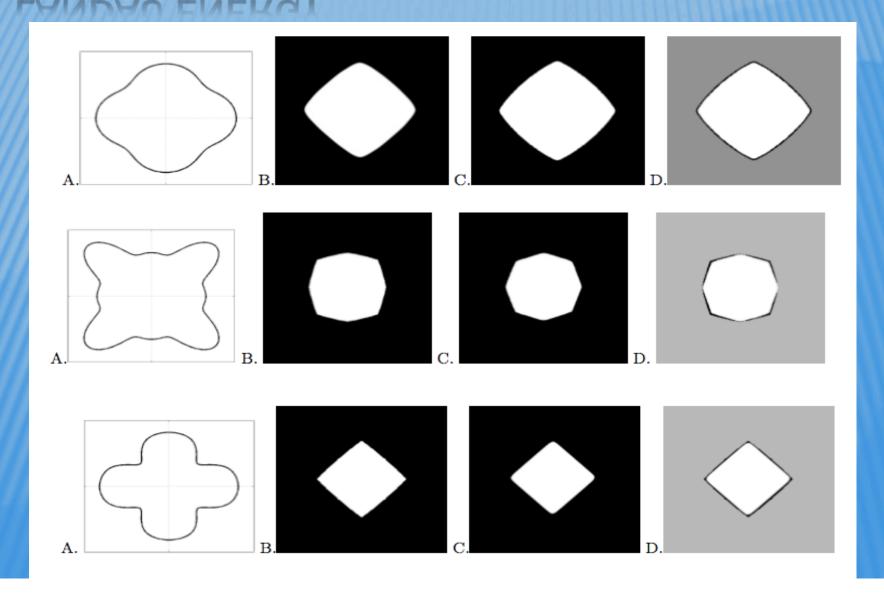
Theorem:

$$WGL_{\epsilon}(u_{\epsilon}) \stackrel{\Gamma}{\to} G_{\infty}(u), \ G_{\infty}(u) = \frac{\sqrt{2}}{3}C(u)|u|_{TV},$$

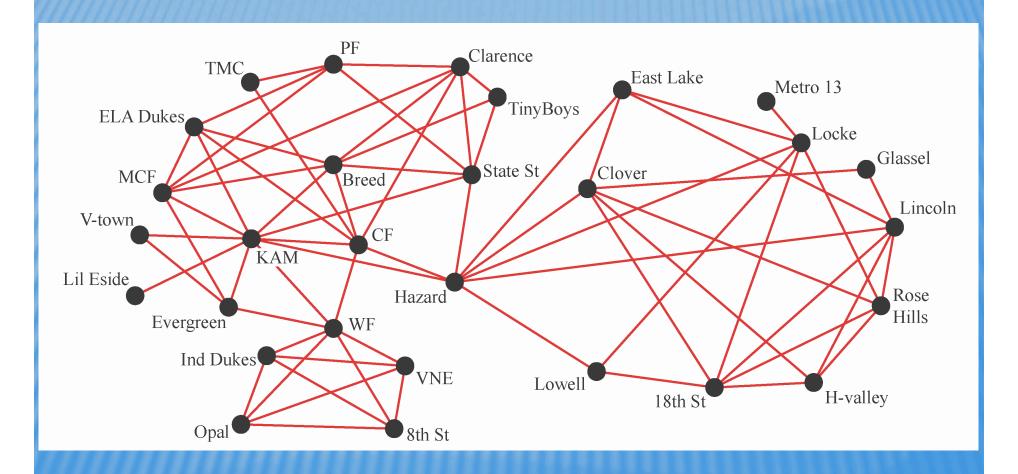
$$G_{\infty}(\chi_E) = \int_{\partial E}
ho(ec{n}(x), \psi) dl(x),$$

GAMMA CONVERGE OF WAVELET GINZBURG-

LANDAU ENERGY Dobrosotskaya and Bertozzi, IFB 2011



DIFFUSE INTERFACES ON GRAPHS



Joint work with Arjuna Flenner, China Lake Paper submitted to MMS 2011

HOW TO CHOOSE GRAPH WEIGHTS

$$w(x,y) = \exp(-||x-y||^2/\tau)$$

In a typical application we have data supported on the graph, possibly high dimensional. The above weights represent comparison of the data.

Examples include:

voting records of Congress – each person has a vote vector associated with them.

Nonlocal means image processing – each pixel has a pixel neighborhood that can be compared with nearby and far away pixels.

GRAPH BASED GL FUNCTIONAL

$$L(\nu, \mu) = \begin{cases} d(\nu) & \text{if } \nu = \mu, \\ -w(\nu, \mu) & \text{otherwise.} \end{cases}$$

$$\langle u, Lu \rangle = \frac{1}{2} \sum_{\mu, \nu \in V} w(\nu, \mu) (u(\nu) - u(\mu))^2$$

$$L_s = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}.$$

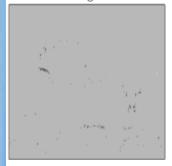
$$E(u) = \frac{\epsilon}{2} \langle u, L_s u \rangle + \frac{1}{4\epsilon} \sum_{z \in Z} (u^2(z) - 1)^2 + \sum_{z \in Z} \frac{\lambda(z)}{2} (u(z) - u_0(z))^2.$$

PROPER NORMALIZATION OF GRAPH LAPLACIAN

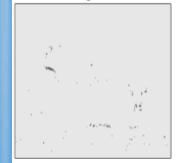
This example uses nonlocal meanstype weights between pixels

Graph Laplacian

Second Eigenvector



Third Eigenvector



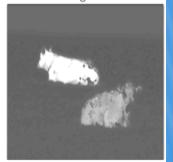
Fourth Eigenvector



Symmetric Graph Laplacian

Second Eigenvector

Third Eigenvector



Fourth Eigenvector

SPECTRAL GROUPING USING NYSTROM METHOD

Fowlkes, Belongie, Chung, and Malik, IEEE TPAMI, 2004

Application of a fast method for computing eigenfunctions of a linear operator – e.g. graph Laplacian.

Useful for fully connected graphs.

Example on right uses kmeans clustering of eigenfunctions to segment the image.

CONVEX SPLITTING METHOD FOR GRAPHS

Convex Splitting for the Graph Laplacian

- 1. Input \leftarrow an initial function u_0 and the eigenvalue-eigenvector pairs $(\tilde{\lambda}_k, \phi_k(x))$ for the graph Laplacian L_s from Equation (2.7).
- 2. Set convexity parameter c and interface scale ϵ from Equation (3.2).
- 3. Set the time step dt.
- 4. Initialize $a_k^{(0)} = \int u(x)\phi_k(x) dx$.
- 5. Initialize $b_k^{(0)} = \int [u_0(x)]^3 \phi_k(x) \, dx$.
- 6. Initialize $d_k^{(0)} = 0$.
- 7. Calculate $\mathcal{D}_k = 1 + dt \ (\epsilon \ \tilde{\lambda}_k + c)$.
- 8. For n less than a set number of iterations M

(a)
$$a_k^{(n+1)} = \mathcal{D}_k^{-1} \left[\left(1 + \frac{dt}{\epsilon} + c \, dt \right) \, a_k^{(n)} - \frac{dt}{\epsilon} b_k^{(n)} - dt d_k^{(n)} \right]$$

- (b) $u^{(n+1)}(x) = \sum_{k=0}^{\infty} a_k^{(n+1)} \phi_k(x)$
- (c) $b_k^{(n+1)} = \int [u^{(n+1)}(x)]^3 \phi_k(x) dx$
- (d) $d_k^{(n+1)} = \int \lambda(x) \left(u^{(n+1)}(x) u_0(x) \right) \phi_k(x) dx$
- 9. end for
- 10. Output \leftarrow the function $u^{(M)}(x)$.

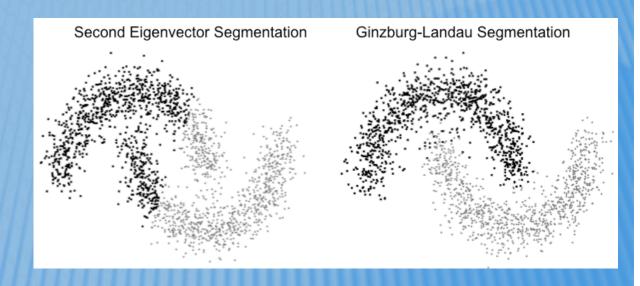
TWO MOONS EXAMPLE

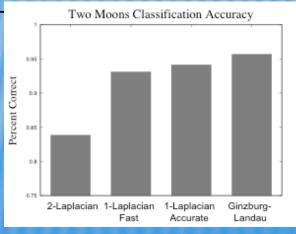
Data embedded in R¹⁰⁰

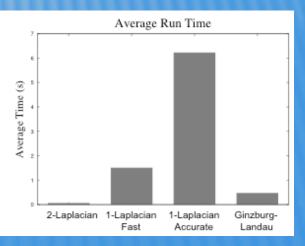
Replaces Laplace operator with a weighted graph Laplacian in the Ginzburg Landau Functional

Allows for segmentation using L1-like metrics due to connection with G.

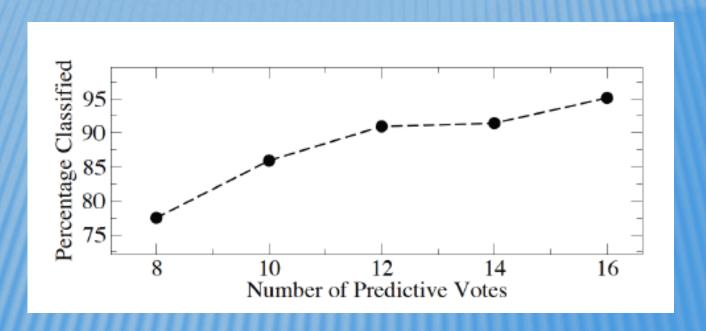
Compared with L1 methods of Hein and Beuhler NIPS 2010.







US HOUSE OF REPRESENTATIVES VOTING RECORD CLASSIFICATION OF PARTY AFFILIATION FROM VOTING RECORD



98th US Congress 1984

Assume knowledge of party affiliation of 5 of the 435 members of the House Infer party affiliation of the remaining 430 members from voting records Gaussian similarity weight matrix for vector of votes (1, 0, -1)

MACHINE LEARNING IDENTIFICATION OF SIMILAR REGIONS IN IMAGES Original Image

Image to Segment

Training Region

Segmented Image

High dimensional fully connected graph – use Nystrom extension methods for fast computation methods.

PAPERS AND PREPRINTS

Andrea L. Bertozzi and Arjuna Flenner,

<u>Diffuse interface models on graphs for classification of high dimensional data</u>
submitted 2011.

Carola-Bibiane Schoenlieb and Andrea Bertozzi, <u>Unconditionally stable schemes for higher order inpainting</u>, *Comm. Math. Sci.*, 9(2), pp. 413-457, 2011.

Julia A. Dobrosotskaya and Andrea L. Bertozzi,

<u>Wavelet analogue of the Ginzburg-Landau energy and its Gamma-convergence</u>, *Interfaces and Free Boundaries*, 12(2), 2010, pp. 497-525.

Julia A. Dobrosotskaya and Andrea L. Bertozzi,

<u>A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting</u>, *IEEE Trans. Imag. Proc.*, 17(5), pages 657-663, 2008.

Andrea Bertozzi, Selim Esedoglu, and Alan Gillette, <u>Analysis of a two-scale Cahn-Hilliard model for image inpainting</u>, <u>Multiscale Modeling and Simulation</u>, vol. 6, no. 3, pages 913-936, 2007.

Andrea Bertozzi, Selim Esedoglu, and Alan Gillette, Inpainting of Binary Images Using the Cahn-Hilliard Equation IEEE Trans. Image Proc. 16(1) pp. 285-291, 2007.