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In theory, there’s no
difference between theory
and practice. In practice,
there is.

–Yogi Berra
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Motivating example

Nonconvexity is better
We reconstruct an image from samples of its Fourier transform:

min
x
F (∇x), subject to x̂|Ω = ŝ|Ω.

test image s 18 lines/7% sampled recon., F = ‖ · ‖1

9 lines/3.5% sampled recon., F = ‖ · ‖1 recon., nonconvex F
Slide 3 of 19
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A convex splitting

Splitting algorithm

Consider the following, suitable for denoising, deblurring,
compressive sensing, etc.:

min
x
‖∇x‖1 +

µ

2
‖Ax− b‖22.

Now we introduce an auxiliary variable1:

min
w,x
‖w‖1 +

1

2λ
‖w −∇x‖22 +

µ

2
‖Ax− b‖22.

This Douglas-Rachford splitting2 decouples the objective function
from the operators.

1J. Yang, W. Yin, Y. Zhang, Y. Wang, SIAM J. Imaging Sci., 2009
2S. Setzer, Int. J. Comput. Vision, 2011
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A convex splitting

Moreau envelope

Minimization proceeds by alternation, iterating:

min
x

(
min
w

[
‖w‖1 +

1

2λ
‖w −∇x‖22

]
+
µ

2
‖Ax− b‖22

)
.

The Moreau envelope eλ of ‖ · ‖1 tells us what the objective
function is:

min
w
‖w‖1 +

1

2λ
‖w −∇x‖22 = eλ‖ · ‖1(∇x) = Hλ,1(∇x),

where Hλ,1

(
~t
)
k

= hλ,1(tk) is
the (componentwise) Huber
function:

hλ,1(t) =

{
|t|2/2λ, if |t| ≤ λ,
|t| − λ/2, if |t| ≥ λ.
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A convex splitting

Simple iterations

Solving for w is separable and easy:

w = Pλ‖ · ‖1(∇x) = min
{
0, |∇x| − λ

} ∇x
|∇x|

.

This is shrinkage or soft thresholding.

Solving for x leads to a linear equation:(
1

λ
∇∗∇+ µA∗A

)
x =

1

λ
∇∗w + µA∗b.

In many cases, this can be solved in the Fourier domain, at the cost
of two FFTs.
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Nonconvex splitting

Nonconvexification

In the objective function Hλ,1 = eλ‖ · ‖1, we can generalize in two
different ways:

I Use eλ‖ · ‖pp, with 0 < p < 13:

min
w,x
‖w‖pp +

1

2λ
‖w −∇x‖22 +

µ

2
‖Ax− b‖22.

Solving for w is no longer a shrinkage, and can only be done
analytically for special values of p.

I Use Hλ,p, for any p < 14:

hλ,p(t)

=

{
|t|2/2λ, if |t| ≤ λ

1
2−p ,

1
p
|t|p − δ, if |t| ≥ λ

1
2−p .

3Krishnan and Fergus, Neural Information Processing Systems, 2009
4C., International Symposium on Biomedical Imaging, 2009
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Nonconvex splitting

(Non)convex analysis

Is there some Gλ,p such that Hλ,p = eλGλ,p?

h(t) = min
s
g(s) +

1

2λ
|s− t|2

is equivalent to

|t|2

2
− λh(t) =

( | · |2
2

+ λg

)∗
(t). (,)

Since |t|2/2− λhλ,p(t) is convex by construction, we can define
gλ,p by

|s|2

2
+ λgλ,p(s) =

( | · |2
2
− λhλ,p

)∗
(s),

and (,) follows.
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Nonconvex splitting

Proximal analog of ‖ · ‖1

min
x

(
min
w

[
Gλ,p(w) +

1

2λ
‖w −∇x‖22

]
+
µ

2
‖Ax− b‖22

)
.

The solution for w is a p-shrinkage:

w = PλGλ,p(∇x) = min
{
0, |∇x| − λ|∇x|p−1

} ∇x
|∇x|

.
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Nonconvex splitting

Method of multipliers

We can enforce equality with the method of multipliers (also called
split Bregman5 in this context):

min
w,x

Gλ,p(w) +
1

2λ
‖w −∇x− Λ1‖22 +

µ

2
‖Ax− b− Λ2‖22,

where at each iteration we update

Λn+1
1 = Λn1 + cn(wn −∇xn),

Λn+1
2 = Λn2 + dn(b−Axn).

5T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2009
Slide 12 of 19
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Examples

Nonconvexity is better
We reconstruct an image from samples of its Fourier transform:

min
x
F (∇x), subject to x̂|Ω = ŝ|Ω.

test image s 18 lines/7% sampled recon., F = ‖ · ‖1

9 lines/3.5% sampled recon., F = ‖ · ‖1 F = Hλ,−1/2 Slide 14 of 19



Examples

Low rank + sparse decomposition

We seek to decompose a matrix D of high-dimensional data into
low-rank and sparse components:

min
L,S

rank(L) + µ‖S‖0, subject to L+ S = D.

I L represents a low-dimensional model of the data, as in PCA.
I S consists of possibly-large discrepancies from the data. S can

contain useful information, while allowing the model L to be
more robust6.

A tractable approximation is to solve7:

min
L,S

∑
k

gλ,p(σk(L)) + µGλ,p(S) +
µ

2λ
‖D − L− S − Λ‖2F .

6J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, Neural Information
Processing Systems, 2009

7Z. Lin, M. Chen, Y. Ma, preprint, 2010 (p = 1 case)
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Examples

Video example

video D, 240× 320 pixels, 288 frames
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Examples

Video example

sparse component S
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Examples

Video example

low-rank component L
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Examples

Noisy data

Now we penalize the 3D total (q-)variation of S, with q ≤ 1:

min
L,S,V,W

∑
k

gλ,p(σk(L)) + αGµ,p(V ) + βGν,q(W )

+
1

2λ
‖D−L−S‖2F+

α

2µ
‖V −S−Λ1‖2F+

β

2ν
‖W−∇S−Λ2‖2F .

Solving for L, V , and W is done by shrinkage, and the quadratic
problem for S can be solved using two FFTs.

Slide 17 of 19



Examples

Noisy data

Now we penalize the 3D total (q-)variation of S, with q ≤ 1:

min
L,S,V,W

∑
k

gλ,p(σk(L)) + αGµ,p(V ) + βGν,q(W )

+
1

2λ
‖D−L−S‖2F+

α

2µ
‖V −S−Λ1‖2F+

β

2ν
‖W−∇S−Λ2‖2F .

Solving for L, V , and W is done by shrinkage, and the quadratic
problem for S can be solved using two FFTs.

Slide 17 of 19



Examples

Preserving noisy shapes

Why q < 1?

∫
|∇u| penalizes the length of edges in 2D, or the surface area of

boundaries in 3D. This can distort shapes.
∫
|∇u|q, in contrast,

penalizes a 2− q dimensional analog of length instead8, or a 3− q
dimensional analog of area, thus preserving more complex shapes.

noisy image q = 2 q = 1 q = 3/4 q = 1/2 q = 1/4

8C., International Conference on Image Processing, 2007
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Examples

Noisy video example

noisy video D
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Examples

Noisy video example

sparse component S, q = 1/2
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Examples

Noisy video example

low-rank component L
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Examples

Noisy video example

residual; SNR of L+ S is 16.9 dB for q = 1/2, 15.7 dB for q = 1
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Summary

Summary

I Nonconvex optimization gives better results for sparse recovery
(in practice).

I State-of-the-art convex optimization methods can be extended
to the nonconvex case, giving excellent computational
efficiency.

math.lanl.gov/~rick
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