Nonconvex splitting algorithms and video decomposition

Rick Chartrand
Los Alamos National Laboratory

July 26, 2011
In theory, there's no difference between theory and practice. In practice, there is.

-Yogi Berra

Outline

Motivating example

A convex splitting

Nonconvex splitting

Examples

Nonconvexity is better

We reconstruct an image from samples of its Fourier transform:

$\min _{x} F(\nabla x)$, subject to $\left.\hat{x}\right|_{\Omega}=\left.\hat{s}\right|_{\Omega}$.
 \boldsymbol{x}

test image s

9 lines/3.5\% sampled

18 lines/7\% sampled

recon., $F=\|\cdot\|_{1}$

recon., $F=\|\cdot\|_{1}$

recon., nonconvex $\boldsymbol{F}_{\text {Slide 3 of 19 }}$

Outline

Motivating example

A convex splitting

Nonconvex splitting

Examples

Splitting algorithm

Consider the following, suitable for denoising, deblurring, compressive sensing, etc.:

$$
\min _{x}\|\nabla x\|_{1}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

Splitting algorithm

Consider the following, suitable for denoising, deblurring, compressive sensing, etc.:

$$
\min _{x}\|\nabla x\|_{1}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

Now we introduce an auxiliary variable ${ }^{1}$:

$$
\min _{w, x}\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

${ }^{1}$ J. Yang, W. Yin, Y. Zhang, Y. Wang, SIAM J. Imaging Sci., 2009

Splitting algorithm

Consider the following, suitable for denoising, deblurring, compressive sensing, etc.:

$$
\min _{x}\|\nabla x\|_{1}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

Now we introduce an auxiliary variable ${ }^{1}$:

$$
\min _{w, x}\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

This Douglas-Rachford splitting ${ }^{2}$ decouples the objective function from the operators.

[^0]
Moreau envelope

Minimization proceeds by alternation, iterating:

$$
\min _{x}\left(\min _{w}\left[\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}\right]+\frac{\mu}{2}\|A x-b\|_{2}^{2}\right) .
$$

Moreau envelope

Minimization proceeds by alternation, iterating:

$$
\min _{x}\left(\min _{w}\left[\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}\right]+\frac{\mu}{2}\|A x-b\|_{2}^{2}\right) .
$$

The Moreau envelope e_{λ} of $\|\cdot\|_{1}$ tells us what the objective function is:

$$
\min _{w}\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}=e_{\lambda}\|\cdot\|_{1}(\nabla x)=H_{\lambda, 1}(\nabla x)
$$

Moreau envelope

Minimization proceeds by alternation, iterating:

$$
\min _{x}\left(\min _{w}\left[\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}\right]+\frac{\mu}{2}\|A x-b\|_{2}^{2}\right) .
$$

The Moreau envelope e_{λ} of $\|\cdot\|_{1}$ tells us what the objective function is:

$$
\min _{w}\|w\|_{1}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}=e_{\lambda}\|\cdot\|_{1}(\nabla x)=H_{\lambda, 1}(\nabla x)
$$

where $H_{\lambda, 1}(\vec{t})_{k}=h_{\lambda, 1}\left(t_{k}\right)$ is the (componentwise) Huber function:
$h_{\lambda, 1}(t)= \begin{cases}|t|^{2} / 2 \lambda, & \text { if }|t| \leq \lambda, \\ |t|-\lambda / 2, & \text { if }|t| \geq \lambda .\end{cases}$

Simple iterations

Solving for \boldsymbol{w} is separable and easy:

$$
w=P_{\lambda}\|\cdot\|_{1}(\nabla x)=\min \{0,|\nabla x|-\lambda\} \frac{\nabla x}{|\nabla x|}
$$

This is shrinkage or soft thresholding.

Simple iterations

Solving for \boldsymbol{w} is separable and easy:

$$
w=P_{\lambda}\|\cdot\|_{1}(\nabla x)=\min \{0,|\nabla x|-\lambda\} \frac{\nabla x}{|\nabla x|}
$$

This is shrinkage or soft thresholding.

Solving for \boldsymbol{x} leads to a linear equation:

$$
\left(\frac{1}{\lambda} \nabla^{*} \nabla+\mu A^{*} A\right) x=\frac{1}{\lambda} \nabla^{*} w+\mu A^{*} b
$$

In many cases, this can be solved in the Fourier domain, at the cost of two FFTs.

Outline

Motivating example

A convex splitting

Nonconvex splitting

Examples

Nonconvexification

In the objective function $H_{\lambda, 1}=e_{\lambda}\|\cdot\|_{1}$, we can generalize in two different ways:

Nonconvexification

In the objective function $\boldsymbol{H}_{\boldsymbol{\lambda}, 1}=e_{\boldsymbol{\lambda}}\|\cdot\|_{1}$, we can generalize in two different ways:

- Use $e_{\lambda}\|\cdot\|_{p}^{p}$, with $0<p<1^{3}$:

$$
\min _{w, x}\|w\|_{p}^{p}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

${ }^{3}$ Krishnan and Fergus, Neural Information Processing Systems, 2009

Nonconvexification

In the objective function $\boldsymbol{H}_{\boldsymbol{\lambda}, 1}=e_{\boldsymbol{\lambda}}\|\cdot\|_{1}$, we can generalize in two different ways:

- Use $e_{\lambda}\|\cdot\|_{p}^{p}$, with $0<p<1^{3}$:

$$
\min _{w, x}\|w\|_{p}^{p}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

Solving for w is no longer a shrinkage, and can only be done analytically for special values of \boldsymbol{p}.

[^1]
Nonconvexification

In the objective function $H_{\lambda, 1}=e_{\lambda}\|\cdot\|_{1}$, we can generalize in two different ways:

- Use $e_{\lambda}\|\cdot\|_{p}^{p}$, with $0<p<1^{3}$:

$$
\min _{w, x}\|w\|_{p}^{p}+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}+\frac{\mu}{2}\|A x-b\|_{2}^{2}
$$

Solving for \boldsymbol{w} is no longer a shrinkage, and can only be done analytically for special values of p.

- Use $H_{\lambda, p}$, for any $p<\mathbf{1}^{4}$:

$$
\begin{aligned}
& h_{\lambda, p}(t) \\
= & \begin{cases}|t|^{2} / 2 \lambda, & \text { if }|t| \leq \lambda^{\frac{1}{2-p}} \\
\frac{1}{p}|t|^{p}-\delta, & \text { if }|t| \geq \lambda^{\frac{1}{2-p}}\end{cases}
\end{aligned}
$$

${ }^{3}$ Krishnan and Fergus, Neural Information Processing Systems, 2009
${ }^{4}$ C., International Symposium on Biomedical Imaging, 2009

(Non)convex analysis

Is there some $G_{\boldsymbol{\lambda}, p}$ such that $\boldsymbol{H}_{\boldsymbol{\lambda}, p}=\boldsymbol{e}_{\boldsymbol{\lambda}} \boldsymbol{G}_{\boldsymbol{\lambda}, \boldsymbol{p}}$?

(Non)convex analysis

Is there some $G_{\boldsymbol{\lambda}, p}$ such that $\boldsymbol{H}_{\boldsymbol{\lambda}, p}=\boldsymbol{e}_{\boldsymbol{\lambda}} \boldsymbol{G}_{\boldsymbol{\lambda}, \boldsymbol{p}}$?

$$
h(t)=\min _{s} g(s)+\frac{1}{2 \lambda}|s-t|^{2}
$$

is equivalent to

$$
\begin{equation*}
\frac{|t|^{2}}{2}-\lambda h(t)=\left(\frac{|\cdot|^{2}}{2}+\lambda g\right)^{*}(t) \tag{©}
\end{equation*}
$$

(Non)convex analysis

Is there some $G_{\lambda, p}$ such that $\boldsymbol{H}_{\boldsymbol{\lambda}, p}=e_{\lambda} G_{\lambda, p}$?

$$
h(t)=\min _{s} g(s)+\frac{1}{2 \lambda}|s-t|^{2}
$$

is equivalent to

$$
\begin{equation*}
\frac{|t|^{2}}{2}-\lambda h(t)=\left(\frac{|\cdot|^{2}}{2}+\lambda g\right)^{*}(t) \tag{©}
\end{equation*}
$$

Since $|t|^{2} / 2-\lambda h_{\lambda, p}(t)$ is convex by construction, we can define $g_{\lambda, p}$ by

$$
\frac{|s|^{2}}{2}+\lambda g_{\lambda, p}(s)=\left(\frac{|\cdot|^{2}}{2}-\lambda h_{\lambda, p}\right)^{*}(s)
$$

and (\odot) follows.

Proximal analog of $\|\cdot\|_{1}$

$$
\min _{x}\left(\min _{w}\left[G_{\lambda, p}(w)+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}\right]+\frac{\mu}{2}\|A x-b\|_{2}^{2}\right)
$$

Proximal analog of $\|\cdot\|_{1}$

$$
\min _{x}\left(\min _{w}\left[G_{\lambda, p}(w)+\frac{1}{2 \lambda}\|w-\nabla x\|_{2}^{2}\right]+\frac{\mu}{2}\|A x-b\|_{2}^{2}\right)
$$

The solution for w is a p-shrinkage:

$$
w=P_{\lambda} G_{\lambda, p}(\nabla x)=\min \left\{0,|\nabla x|-\lambda|\nabla x|^{p-1}\right\} \frac{\nabla x}{|\nabla x|}
$$

Method of multipliers

We can enforce equality with the method of multipliers (also called split Bregman ${ }^{5}$ in this context):

$$
\min _{w, x} G_{\lambda, p}(w)+\frac{1}{2 \lambda}\left\|w-\nabla x-\Lambda_{1}\right\|_{2}^{2}+\frac{\mu}{2}\left\|A x-b-\Lambda_{2}\right\|_{2}^{2}
$$

where at each iteration we update

$$
\begin{gathered}
\Lambda_{1}^{n+1}=\Lambda_{1}^{n}+c_{n}\left(w^{n}-\nabla x^{n}\right) \\
\Lambda_{2}^{n+1}=\Lambda_{2}^{n}+d_{n}\left(b-A x^{n}\right)
\end{gathered}
$$

${ }^{5}$ T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2009

Outline

Motivating example

A convex splitting

Nonconvex splitting

Examples

Nonconvexity is better

We reconstruct an image from samples of its Fourier transform:

$\min _{x} F(\nabla x)$, subject to $\left.\hat{x}\right|_{\Omega}=\left.\hat{s}\right|_{\Omega}$.
 \boldsymbol{x}

test image s

9 lines/3.5\% sampled

18 lines/7\% sampled

recon., $F=\|\cdot\|_{1}$

recon., $F=\|\cdot\|_{1}$

$\boldsymbol{F}=\boldsymbol{H}_{\lambda,-1 / 2}$

Low rank + sparse decomposition

We seek to decompose a matrix \boldsymbol{D} of high-dimensional data into low-rank and sparse components:

$$
\min _{L, S} \operatorname{rank}(L)+\mu\|S\|_{0}, \text { subject to } L+S=D .
$$

Low rank + sparse decomposition

We seek to decompose a matrix \boldsymbol{D} of high-dimensional data into low-rank and sparse components:

$$
\min _{L, S} \operatorname{rank}(L)+\mu\|S\|_{0}, \text { subject to } L+S=D
$$

- L represents a low-dimensional model of the data, as in PCA.

Low rank + sparse decomposition

We seek to decompose a matrix \boldsymbol{D} of high-dimensional data into low-rank and sparse components:

$$
\min _{L, S} \operatorname{rank}(L)+\mu\|S\|_{0}, \text { subject to } L+S=D
$$

- L represents a low-dimensional model of the data, as in PCA.
- S consists of possibly-large discrepancies from the data. S can contain useful information, while allowing the model L to be more robust ${ }^{6}$.

[^2]
Low rank + sparse decomposition

We seek to decompose a matrix \boldsymbol{D} of high-dimensional data into low-rank and sparse components:

$$
\min _{L, S} \operatorname{rank}(L)+\mu\|S\|_{0}, \text { subject to } L+S=D
$$

- L represents a low-dimensional model of the data, as in PCA.
- S consists of possibly-large discrepancies from the data. S can contain useful information, while allowing the model L to be more robust ${ }^{6}$.
A tractable approximation is to solve ${ }^{7}$:

$$
\min _{L, S} \sum_{k} g_{\lambda, p}\left(\sigma_{k}(L)\right)+\mu G_{\lambda, p}(S)+\frac{\mu}{2 \lambda}\|D-L-S-\Lambda\|_{F}^{2}
$$

[^3]
Video example

video $D, 240 \times 320$ pixels, 288 frames

Video example

sparse component \boldsymbol{S}

Video example

low-rank component L

Noisy data

Now we penalize the 3D total $(\boldsymbol{q}-)$ variation of S, with $q \leq 1$:

$$
\begin{aligned}
& \min _{L, S, V, W} \sum_{k} g_{\lambda, p}\left(\sigma_{k}(L)\right)+\alpha G_{\mu, p}(V)+\beta G_{\nu, q}(W) \\
+ & \frac{1}{2 \lambda}\|D-L-S\|_{F}^{2}+\frac{\alpha}{2 \mu}\left\|V-S-\Lambda_{1}\right\|_{F}^{2}+\frac{\beta}{2 \nu}\left\|W-\nabla S-\Lambda_{2}\right\|_{F}^{2}
\end{aligned}
$$

Now we penalize the 3D total ($q-$)variation of S, with $q \leq 1$:

$$
\begin{aligned}
& \min _{L, S, V, W} \sum_{k} g_{\lambda, p}\left(\sigma_{k}(L)\right)+\alpha G_{\mu, p}(V)+\beta G_{\nu, q}(W) \\
+ & \frac{1}{2 \lambda}\|D-L-S\|_{F}^{2}+\frac{\alpha}{2 \mu}\left\|V-S-\Lambda_{1}\right\|_{F}^{2}+\frac{\beta}{2 \nu}\left\|W-\nabla S-\Lambda_{2}\right\|_{F}^{2} .
\end{aligned}
$$

Solving for L, V, and W is done by shrinkage, and the quadratic problem for S can be solved using two FFTs.

Preserving noisy shapes

Why $q<1$?

Preserving noisy shapes

Why $q<1$?

$\int|\nabla u|$ penalizes the length of edges in 2D, or the surface area of boundaries in 3D. This can distort shapes.

Preserving noisy shapes

Why $q<1$?
$\int|\nabla u|$ penalizes the length of edges in 2D, or the surface area of boundaries in 3D. This can distort shapes. $\int|\nabla u|^{q}$, in contrast, penalizes a $2-\boldsymbol{q}$ dimensional analog of length instead ${ }^{8}$, or a $\mathbf{3}-\boldsymbol{q}$ dimensional analog of area, thus preserving more complex shapes.

Preserving noisy shapes

Why $q<1$?

$\int|\nabla u|$ penalizes the length of edges in 2D, or the surface area of boundaries in 3D. This can distort shapes. $\int|\nabla \boldsymbol{u}|^{q}$, in contrast, penalizes a $2-\boldsymbol{q}$ dimensional analog of length instead ${ }^{8}$, or a $\mathbf{3}-\boldsymbol{q}$ dimensional analog of area, thus preserving more complex shapes.

${ }^{8}$ C., International Conference on Image Processing, 2007

Noisy video example

noisy video D

Noisy video example

sparse component $S, q=1 / 2$

Noisy video example

low-rank component L

Noisy video example

residual; SNR of $L+S$ is 16.9 dB for $q=\mathbf{1} / \mathbf{2}, 15.7 \mathrm{~dB}$ for $q=\mathbf{1}$

- Nonconvex optimization gives better results for sparse recovery (in practice).
- State-of-the-art convex optimization methods can be extended to the nonconvex case, giving excellent computational efficiency.

> math.lanl.gov/~rick

[^0]: ${ }^{1}$ J. Yang, W. Yin, Y. Zhang, Y. Wang, SIAM J. Imaging Sci., 2009
 ${ }^{2}$ S. Setzer, Int. J. Comput. Vision, 2011

[^1]: ${ }^{3}$ Krishnan and Fergus, Neural Information Processing Systems, 2009

[^2]: ${ }^{6}$ J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, Neural Information Processing Systems, 2009

[^3]: ${ }^{6}$ J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, Neural Information
 Processing Systems, 2009
 ${ }^{7}$ Z. Lin, M. Chen, Y. Ma, preprint, 2010 ($p=1$ case)

